

Statistical Natural Language Processing [COMP0087]

Manual feature engineering Linear models and classification

Vasileios Lampos

Computer Science, UCL

About me

- Associate Professor at CS
- ► Vasileios or Bill ■
- Website: lampos.net
- Research in ML / NLP methods for health
- Publications: scholar.google.com/citations?user=eXDONDEAAAAJ
- Tweets @ twitter.com/lampos
- ▶ 1.09D @ 90 High Holborn (UCL Centre for AI) / Meeting by appointment

About this lecture

- ► In this lecture:
 - Manual feature engineering for NLP applications
 - Introductory insights about supervised learning (classification)
 - A few introductory remarks about word representation in NLP
- ► Reading: Chapters 2 and 5 of "Speech and Language Processing" (SLP) by Jurafsky and Martin (2023) web.stanford.edu/~jurafsky/slp3/
- Acknowledgements: Based on prior material from Pontus Stenetorp

Sentiment analysis as our NLP task paradigm

- A popular task / downstream NLP application
- * "A Clockwork Orange" is a cinematic masterpiece.
- No, I don't think this was Emma Stone's best performance, but overall it was still a decent one!
- Maybe I am too old, but I find any reference to "AI Music" quite irritating and aesthetically displeasing.

The NLP view (for today)

The NLP view (for today)

Data representation matters

- Machine learning methods become simpler when data representations are good
- But what is a "good" data representation?
 - Accurate / correct (trivial if we take measurements, not trivial when we abstract)
 - Good choice for a specific modelling task
- ► Then again, if it was always possible to obtain or have great data representations, advanced machine learning methods would not have been necessary
- More on some fundamental aspects of data representation in NLP later in this lecture!

Tokenisation

► A machine sees a string as a sequence of characters — no sense of "words" In my rearview mirror, the sun is going down.

```
In _ my _ rearview _ mirror _ , _ the _ sun _ is _ going _ down _ .
```

Of course, mama's gonna help build the wall!

```
Of _ course _ , _ mama _ 's _ gonna _ help _ build _ the _ wall _ !
```

- ▶ Break up string into tokens (≠ words)
 - Easy for well-structured English (white space plus a few other rules)
 - Not easy for some languages (e.g. Chinese, Japanese)
 - Not necessarily easy for unstructured (e.g. social media) or domain-specific (e.g. scientific) text

Tokenisation of English — More challenging examples

@RandomTwitterUser: Its another day of the week.also my bday! Feel xhausted ! **@Helen0001781**, are U there? #goodMorningEveryone

The first example was the initial preparation of a,ω -diazido-terminated polystyrene-b-poly(ethylene oxide)-b-polystyrene followed by coupling with dipropargyl ether in dimethylformamide (DMF) in the presence of a CuBr/N,N,N',N'',N''-pentamethyldiethylenetriamine catalyst.

From: K. Matyjaszewski, Adv. Mater. 2018, 30, 1706441.

Representing words (tokens) with one-hot vectors

Representing sentences with sum pooling

"Bag of words" representation

"Bag of words" representation

$$f(x) \in \mathbb{R}^m$$
, where $f(x) = \sum_{w \in x} f(w)$

Representing sentences by sum pooling — Aggregation effect

Sum Pooling

Sum pooling is sensitive to sentence length

Representing sentences by mean pooling

Mean Pooling

Mean pooling corrects the sentence length sensitivity of sum pooling

Representing sentences by max pooling

Max pooling maintains a binary representation

More engineering — Using bi-grams

Uni-gram (1-gram) features may not be enough. Engineer more features! bi-grams (2-grams) may capture more cohesive language patterns.

More (engineering) ideas?

- 1. Use dictionaries?
- 2. Use syntax?
- 3. Preprocessing?

•

The NLP view (for today)

The NLP view (for today)

Linear classification — Obtaining a classification score

For simplicity, let's now use $\mathbf{x} \in \mathbb{R}^m$ to represent f(x)

vector space representation for a set of tokens x

Classification decision boundary

We are "learning" a decision boundary that separates positives from negative examples.

If the range of scores is bounded, e.g. from [-1 to 1], we may think a good boundary choice is 0. No learning! However, on most occasions this is a sub-optimal decision.

Pseudo-probabilistic output — Logistic regression

Assign *pseudo*-probabilities to classes

$$p_{\mathbf{z}}(\mathbf{y} = + | \mathbf{x}) = \sigma(s_{\mathbf{z}}(\mathbf{x})) = \frac{1}{1 + e^{-s_{\mathbf{z}}(\mathbf{x})}}$$

$$p_{\mathbf{z}}\left(y = - \mid \mathbf{x}\right) = 1 - p_{\mathbf{z}}\left(y = + \mid \mathbf{x}\right)$$

Classification — Search / final classification outcome

Choose the label with the highest probability / score

Trivial for binary classification (2 classes):

- 1. Calculate $p_{\mathbf{z}}(+|\mathbf{x})$
- 2. Calculate $p_{\mathbf{z}}(-|\mathbf{x})$
- 3. Choose highest one!

Formally:
$$y^* = \underset{\hat{y}}{\operatorname{argmax}} p_{\mathbf{z}} \left(\hat{y} \in \{-, +\} \mid \mathbf{x} \right)$$

Less trivial when dealing with thousands of classes (machine translation, language models)

The NLP view (for today)

The NLP view (for today)

Training loss

observations (input) labels (output)

Data set
$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$$

$$\ell(\mathbf{x}, y, \mathbf{z}) = -\log p_{\mathbf{z}}(y | \mathbf{x})$$

Cross-entropy loss (logistic regression)

expected output (label)

input
$$L_{ce}(\mathcal{D}, \mathbf{z}) = -\frac{1}{n} \sum_{i=1}^{n} \log p_{\mathbf{z}} \left(y_i | \mathbf{x}_i \right)$$

to simplify the notation (see previous slide)

$$\sigma\left(s_{\mathbf{z}}\left(\mathbf{x}_{i}\right)\right) \rightarrow \sigma_{\mathbf{x}_{i}}$$

Detailed explanation in Chapter 5 of SLP

Hint: y can be seen as a Bernoulli distribution

Cross-entropy loss

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \sigma_{\mathbf{x}_i} + (1 - y_i) \log \left(1 - \sigma_{\mathbf{x}_i} \right) \right]$$

 y_i can either be 1 (+ class) or 0 (-)

Intuition for the cross-entropy loss (logistic regression)

When $y_i = 1$ (or the + class)

the instance loss $\ell_{ce} = -\log \sigma_{\mathbf{x}_i}$

Training (optimisation)

Training — Gradient descent

Gradient descent

$$z_0 = \text{random};$$
 $i = 0;$
repeat until convergence:
$$z_{i+1} = z_i - \alpha \nabla_z L(\mathcal{D}, z_i);$$
 $i = i + 1;$
small

learning rate

Training — Stochastic gradient descent

$$\nabla_{\mathbf{w}} L\left(\mathcal{D}, \mathbf{z}\right) = \nabla_{\mathbf{w}} \frac{1}{n} \left[\mathcal{E}\left(\mathbf{x}_{1}, y_{1}, \mathbf{z}\right) + \dots + \mathcal{E}\left(\mathbf{x}_{n}, y_{n}, \mathbf{z}\right) \right]$$

Models with **many** parameters and large training sets → gradient descend updates one parameter at a time using *stale* values (for the rest), needs to iterate across all training samples, long time without update

Counter-measure: Approximate gradients via sampling a single training instance (or in practice a small subset known as a batch)

$$\nabla_{\mathbf{w}} L\left(\mathcal{D}, \mathbf{z}\right) \approx \nabla_{w} \ell\left(\mathbf{x}_{j}, y_{j}, \mathbf{z}\right)$$

$$z_{i+1} = z_{i} - \alpha \nabla_{\mathbf{z}} \ell\left(\mathbf{x}_{j}, y_{j}, z_{i}\right)$$

Regularisation

Z *	Z *2	
$\lceil 1 \rceil$	$\begin{bmatrix} 0 \end{bmatrix}$	good
-1	- 1	bad
0.5	0	like
•	•	• •
0	1	good band
0	1	good music
0	1	good lyrics
	•	• •
0	1	this is a great band
		this was a great band

Which one of the two solutions might be better?

L2-norm regularisation

$$L_{\lambda}(\mathcal{D}, \mathbf{z}) = L(\mathcal{D}, \mathbf{z}) + \lambda \|\mathbf{z}\|_{2}^{2}$$

$$L(\mathcal{D}, \mathbf{z}^*): 0.02 0.02$$

 $\|\mathbf{z}^*\|_2^2: 4.09 48.7$

L2-norm vs L1-norm regularisation

1-dimensional parameter vector z

L2-norm regularisation

$$L_{\lambda}(\mathcal{D}, \mathbf{z}) = L(\mathcal{D}, \mathbf{z}) + \lambda \|\mathbf{z}\|_{2}^{2}$$

L1-norm regularisation

$$L_{\lambda}(\mathcal{D}, \mathbf{z}) = L(\mathcal{D}, \mathbf{z}) + \lambda \|\mathbf{z}\|_{1}$$

L2 easier to optimise

L1 non-continuous derivative at 0

L1 sparse, L2 weights are never 0 Desirable property?

Word (token) representation in NLP

figshare.com/articles/dataset/UK_Twitter_word_embeddings/4052331

based on tweets ~ 10 years old!

NB: Uncensored!

Go to lampos.net/img/fig-word-cloud.pdf to zoom in

Why is word representation important?

- ► In a machine learning task (if not 100%, then 99% of current NLP tasks), feature representation is key sometimes, it is more important than the machine learning method itself!
- Hence, better feature representation = better performance
- ► The main driving force for (*large*) language models

Word representation learning formalised

Words / tokens: w

Vocabulary:
$$\mathcal{V} = \{w_1, w_2, ..., w_n\}$$

Learn / find representation function

$$f(w_i) = r_i, i = \{1, ..., n\}$$

Essential properties of a good word representation

A good word representation makes sure that:

- representations for different words are distinct
- similar words (what is the definition of similar here?) should have similar representations

Sparse binary representations

Map words to unique positive non-zero integers

$$f(w) \in \mathbb{N}^n$$

$$f_j(w_i) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{elsewhere} \end{cases}$$
 one-hot vector

For example:

$$f(w_4) = [0 \ 0 \ 0 \ 1 \ ... \ 0]$$
n elements

Sparse binary representation example

$$\mathcal{V} = \{apple, orange, rabbit\}$$

$$f(apple) = [1 \ 0 \ 0]$$

$$f(\text{orange}) = [0 \ 1 \ 0]$$

$$f(rabbit) = [0 \ 0 \ 1]$$

Cosine similarity

cosine-sim(**w**, **v**) =
$$\frac{\sum_{i=1}^{n} w_i \cdot v_i}{\sqrt{\sum_{i=1}^{n} w_i^2} \cdot \sqrt{\sum_{i=1}^{n} v_i^2}} = \frac{\mathbf{w}^{\mathsf{T}} \mathbf{v}}{\|\mathbf{w}\|_2 \|\mathbf{v}\|_2} = \cos \phi$$

where ϕ is the angle between ${f w}$ and ${f v}$ in a vector space

ranges from [-1,1], but for non-negative representations from [0,1]

cosine-sim = 1
$$\rightarrow$$
 identical (ϕ = 0°)
cosine-sim = -1 \rightarrow opposites (ϕ = 180°)
cosine-sim = 0 \rightarrow orthogonal (ϕ = 90°)

Sparse binary (one-hot) cosine similarities (are irrelevant)

Dense continuous word representations

Vocabulary (\mathcal{V}) words / tokens are represented as matrix rows

$$\mathbf{W} \in \mathbb{R}^{|\mathcal{V}| \times d}$$

d: dimensionality of the continuous representation

The representation of a word w, f(w), is now a row of **W**:

$$f(w) = \mathbf{W}_{i::}$$
 or simply $\mathbf{w}_i \in \mathbb{R}^d$

Dense continuous word representations example

$$\mathcal{V} = \{apple, orange, rabbit\}$$

Assuming
$$d = 2$$
, $\mathbf{W} \in \mathbb{R}^{3 \times 2}$

$$f(apple) = [1.0 1.0]$$

$$f(\text{orange}) = [0.9 \ 1.0]$$

$$f(\text{rabbit}) = [0.1 \ 0.5]$$

Dense continuous word similarities

Learning representations

"You shall know a word the company it keeps"

John Rupert (J. R.) Firth (1957)

Word co-occurrences

"... comparing an apple to an orange..."

"... an apple from Italy and an orange from Spain..."

"... my rabbit does not like orange juice..."

Sparse word co-occurrence representations

Record the number of times words co-occur in a collection of documents (corpus)

$$\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|} \quad \text{e.g. } \mathbf{C} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ apple orange rabbit}$$

Similarities based on a co-occurrence matrix

$$\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|} \quad \text{e.g. } \mathbf{C} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ apple}$$

cosine-sim
$$(f(\text{apple}), f(\text{orange})) \approx 0.995$$

cosine-sim $(f(\text{apple}), f(\text{rabbit})) = 0.5$
cosine-sim $(f(\text{orange}), f(\text{rabbit})) \approx 0.756$

Dense continuous representations via matrix factorisation (SVD)

$$\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|} \quad \text{e.g. } \mathbf{C} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ apple orange rabbit}$$

$$\mathbf{c} \qquad \mathbf{v} \qquad \mathbf{U} \in \mathbb{R}^{|\mathcal{V}| \times d} \\ \mathbf{V} \in \mathbb{R}^{d \times |\mathcal{V}|}$$

Dense continuous representations via matrix factorisation (SVD)

Dense continuous representations — Cosine similarity

Let's assume that
$$\mathbf{U} = \begin{bmatrix} -1.26 & 0.65 \\ -1.72 & -0.24 \\ -0.46 & -0.89 \end{bmatrix}$$
 apple orange rabbit rabbit cosine-sim $(f(\text{apple}), f(\text{orange})) \approx 0.817$ cosine-sim $(f(\text{apple}), f(\text{rabbit})) \approx 0.001$

cosine-sim (f(orange), f(rabbit)) ≈ 0.578

Learning by slot filling — Word embeddings

```
"I had ____ with milk for breakfast today."
```

- ► Good: cereals
- ► Acceptable (?): pizza
- ► Bad: songs

"Pink Floyd have become ____ numb."

- ► Good: comfortably
- ► Acceptable (?): very
- ► Bad: dysfunctional

Neural word representations — Cosine similarity

figshare.com/articles/dataset/ UK_Twitter_word_embeddings/4052331

Go to lampos.net/img/fig-word-cloud.pdf to zoom in

cosine-sim
$$(f(\text{apple}), f(\text{orange})) \approx 0.300$$

cosine-sim $(f(\text{apple}), f(\text{rabbit})) \approx 0.094$
cosine-sim $(f(\text{orange}), f(\text{rabbit})) \approx 0.091$