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About me

» Associate Professor at CS

» Vasileios £ or Bill &5

» Website: lampos.net

» Research in ML / NLP methods for health

» Publications: scholar.google.com/citations?user=eXDONDEAAAAJ
» Tweets @ twitter.com/lampos

» 1.09D @ 90 High Holborn (UCL Centre for Al) / Meeting by appointment
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About this lecture

» In this lecture:

— Manual feature engineering for NLP applications
— Introductory insights about supervised learning (classification)
— A few introductory remarks about word representation in NLP

» Reading: Chapters 2 and 5 of “Speech and Language Processing” (SLP) by Jurafsky
and Martin (2023) — web.stanford.edu/~jurafsky/slp3/

» Acknowledgements: Based on prior material from Pontus Stenetorp
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Sentiment analysis as our NLP task paradigm

» A popular task / downstream NLP application

% "A Clockwork Orange” is a cinematic masterpiece. ——— -+
% No, | don’t think this was Emma Stone’s best
performance, but overall it was still a decent one! T
% Maybe | am too old, but | find any reference to Al Music”
_) S—

quite irritating and aesthetically displeasing.
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The NLP view (for today)
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The NLP view (for today)

O
O
Larry {?arl?on 5 Encoder | —> O . —> | Decoder | —> — | Loss +
captivating! O [, . y .
N O ™. L
Ol e
*
] o
\
Manual engineering Sparse Learning

COMPO0O087 - Manual feature engineering / Linear models and classification 6



Data representation matters

» Machine learning methods become simpler when
data representations are good

» But what is a “good” data representation?

» Accurate / correct (trivial if we take measurements, Ax)
not trivial when we abstract)

» Good choice for a specific modelling task

» Then again, if it was always possible to obtain or have

great data representations, advanced machine
learning methods would not have been necessary

» More on some fundamental aspects of data
representation in NLP later in this lecture!
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Tokenisation

» A machine sees a string as a sequence of characters — no sense of “words”

In my rearview mirror, the sun is going down.
In _ my _ rearview _ mirror ., — the _ sun _ is _ going _. down _..

Of course, mama’s gonna help build the wall!
Of _ course ., . mama . 's .. gonna . help . build _ the _ wall !

» Break up string into tokens (# words)

» Easy for well-structured English (white space plus a few other rules)
» Not easy for some languages (e.g. Chinese, Japanese)

» Not necessarily easy for unstructured (e.g. social media) or domain-specific
(e.g. scientific) text
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Tokenisation of English — More challenging examples

@RandomTwitterUser:

another day of the my | Feel
- | , are Ithere?
The first example was the initial preparation of
followed by coupling

with dipropargyl ether in dimethylformamide (DMF) in the presence of a

CuBr/N,N,N’N ;N "“pentamethyldiethylenetriamine catalyst

From: K. Matyjaszewski, Adv. Mater. 2018, 30, 1/06441.
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Representing words (tokens) with one-hot vectors

ol O O
1@ O O
ol ® O
21O O O vocabulary
ol O o
° O O O 1 a
1 1 1 .|
word (token) | like UCL V = | 3| like

/

flw) € R™, where f(w) = {

1 1fW=%l m | zoo

0 otherwise
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Representing sentences with sum pooling

Sum

Pooling
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“Bag of words” representation

Sum U
Pooling
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“Bag of words” representation

U R %
Sum g = @ O 1| @
) O O 1| @
Pooling ol + |0 + 0] |= o0
O O o 1@
indifferent to 5 5 5
token position & & & °[©
t t t
like | UCL

f(x) € R™, where f(x) = )’ f(w)

wex
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Representing sentences by sum pooling — Aggregation effect

2 occurrences
o of “like”

Sum
Pooling

= O N = O

O-900®O

t t
like like UCL

— - [0-00000
+
0~ 00@00
+
0~ 00@00
+
— [0 - 00000
|

Sum pooling is sensitive to sentence length
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Representing sentences by mean pooling

0.25

0.5

4 0.25

Mean
Pooling

= O N = O

O-900®O

O~-00@0O0O
O-900®O

t t
like like UCL e [0,1]™

— - [0- 00000
+
0~ 0000
+
+
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|

Mean pooling corrects the sentence length sensitivity of sum pooling
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Representing sentences by max pooling

max

O-00@00O
O-~00@0O0
O-900®0O

t t
like like UCL

- = | O-00080
— O-@0000
|

Max
Pooling

Max pooling maintains a binary representation
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More engineering — Using bi-grams

o 5 o 5 5 pool ol concatenate
O O O O [ [
@) @) @) @) @) O
® + o 4+ |9 4+ [ + |O — @ °
3 3 S O O O bad |@
O O O ® O o ®| Floyd
& O © O O O 2 Pink
N N -
Pink Floyd are not bad R
,,,,,, °
N N\ \/ \/ o S
O O O O O ®| Pink Floyd
O O [ ] O ) not bad (@
O O O O l O O
O ° O O ° :
Pink Floyd (@ + of + |0 + |0 — ° O
O O O ®| not bad o =
7 O O O o .
O O O O O

Uni-gram (1-gram) features may not be enough. Engineer more features!
bi-grams (2-grams) may capture more cohesive language patterns.
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More (engineering) ideas?

1. Use dictionaries?
2. Use syntax?

3. Preprocessing?
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The NLP view (for today)
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The NLP view (for today)
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Linear classification — Obtaining a classification score

For simplicity, let's now use X € |

" to represent f(x)

representation for
a set of tokens x

ZTXX=SZ(X)

e N

weights representation

classification
score, a.k.a.y

01O

2
2 o|O
~§ c:g ‘\\\& 1| @
O@00®~-O| X 00O
1504 1.1 1| @
01O

bad
coffee

=04x1+1.1x1=1.5

like /

classification @
outcome???
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Classification decision boundary

We are “learning” a decision boundary that separates
positives from negative examples.

If the range of scores is bounded, e.g. from [-1 to 1],
we may think a good boundary choice is 0. No learning!

However, on most occasions this is a sub-optimal decision.
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Pseudo-probabilistic output — Logistic regression

Assign pseudo-probabilities to classes

1 I I I I I I I I I L

0.75
N
© 0 o5 o (sigmoid function)
O I
4 3 2 1 0 1 2 3 4
Sz (X)
1
pa(=+1%) =0 5, 00) =
p,(y=—1x)=1-p,(y =+ 1Ix)
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Classification — Search / final classification outcome

Choose the label with the highest probability / score

Trivial for binary classification (2 classes):

1. Calculate p, (+\X)

2. Calculate p, (—\X)
3. Choose highest one!

Formally: y* = argmanpZ 6}6 1 ‘X)

Less trivial when dealing with thousands of classes
(machine translation, language models)
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The NLP view (for today)
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Training loss

observations (input) labels (output)

N/

Data SEt 9 — {(X1, yl)a (X29 )’2), KRR (er yn)}

per instance loss

4 1 k
Loss function L(S,z) = — Z X, Vi, z)
=

conditional

/ log-likelihood

K(Xayaz)_ lngZ y‘X)
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Cross-entropy loss (logistic regression)

expected output (label)

input _ ,
. \ / to simplify the

(9 7)) = — — logpz y; ‘ X, notation (See
e Z ( previous slide)

o (s, (XZ)) — Ox,

Cross-entropy loss

Detailed explanation in

1 n _ -
Chapter 5 of SLP — — Z y;logo, + (1 _ Yi) log (1 _ gxi)
Hint: y can be seen as AP -
a Bernoulli distribution

y; can either be 1 (+ class) or O (—)
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(€)

instance loss

W

N

s

Intuition for the cross-entropy loss (logistic regression)

When y. =1 (or the + class)

the instance loss £ e = —logo,

Ccross-entropy (fce)
N — — hinge
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Training (optimisation)

Loss

/

Zz* = arg min L (9, z)

/ ZzeR™

best parameters
(minimising the loss)
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Training — Gradient descent

Gradient descent

Zop = random;
1 = 0;

repeat until convergence:

vl — & — Q@ZL (@, Zi))
=i+ 1; '\

small

learning rate
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Training — Stochastic gradient descent

Vo L(D.2) = Vo [ (x1s91,2) + oo+ £ (%03 2)]
n

Models with many parameters and large training sets — gradient descend

updates one parameter at a time using stale values (for the rest), needs to
iterate across all training samples, long time without update

Counter-measure: Approximate gradients via sampling a single training
instance (or in practice a small subset known as a batch)

V., L (QZ,Z) ~V, € (Xj,yj,z)

Zip1 =4 —aV, (Xja Yis Zi)
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Regularisation

o

] 0 | good Which one of the two
1 —1 | bad solutions might be better?
0.5 0 ike

(.) 1 good band

0 1 | good music

0 | good lyrics

' A L2-norm regularisation

0 1 | thisis a great band

0 1 | this was a great band Lﬂ(@, Z) = L(ga z) + /IHZH%

L(2,z%): 0.02 0.02
|z*||5: 4.09  48.7
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Lp—norm
N

1-dimensional parameter vector 7

L2-norm vs L1-norm regularisation

L2-norm regularisation

L(D,7) = L(D,2) + Al|zl|3

—p = _ L1-norm regularisation
L,(D,z) = L(D,z) + A||z|[,

L2 easier to optimise

|~ L1 non-continuous derivative at O
. L1 sparse, L2 weights are never O

Desirable property?
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Word (token) representation in NLP

figshare.com/articles/dataset/UK_Twitter word _embeddings/4052331

10000 random tokens, word2vec to PCA
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based on tweets
~ 10 years old!

NB:
Uncensored!

Go to

to zoom In


https://figshare.com/articles/dataset/UK_Twitter_word_embeddings/4052331
https://www.lampos.net/img/fig-word-cloud.pdf

Why is word representation important?

» In a machine learning task (if not 100%, then 29% of
current NLP tasks), feature representation is key —

sometimes, it is more important than the machine learning
method itself!

» Hence, better feature representation = better
performance

» The main driving force for (large) language models
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Word representation learning formalised

Words / tokens: w

Vocabulary: 7" = {w;, W, ..., W}

Learn / find representation function

fw)=r,i={1,...,n}

COMPO0O087 - Manual feature engineering / Linear models and classification 37



Essential properties of a good word representation

A good word representation makes sure that:
» representations for different words are distinct

» similar words (what is the definition of similar here?) should
have similar representations
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Sparse binary representations

Map words to unique positive non-zero integers

fw) e N"
I, ifi=j
(w.) = one-hot vector
Jiw) {O, elsewhere
For example:

fw) =10 0 0 1 ... 0]

_—

n elements
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Sparse binary representation example

7" = {apple, orange, rabbit}
flapple) =[1 0 O]
florange) =[0 1 O]
f(rabbit) = [0 O 1]

orange

COMPO0O087 - Manual feature engineering / Linear models and classification 40



Cosine similarity

n
WitV w'v

W.-V
=1 .
57wz /57 2 WLVl
l:l ! l=1 !

where @ is the angle between w and v in a vector space

cosine-sim(w, v) = = COS

ranges from [—1,1], but for non-negative representations from [0, 1]

cosine-sim = 1 — identical (¢ = 0°)
cosine-sim = — 1 — opposites (¢p = 180°)
cosine-sim = 0 — orthogonal (¢ = 90°)
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Sparse binary (one-hot) cosine similarities (are irrelevant)

f(apple) =11 0 0]

florange) =[0 1 O]

flrabbit) =00 1] cosine-sim (f(apple), f(orange)) =0
/ \ cosine-sim (f(apple), f(rabbit)) = ()
cosine-sim (f(orange), f(rabbit)) =0
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Dense continuous word representations

Vocabulary (7)) words / tokens are represented as matrix rows

W = [ ‘7‘ X d
d: dimensionality of the continuous representation

The representation of a word w, f(w), is now a row of W:

— : d
Jw) = W, . orsimply w; €
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Dense continuous word representations example

7" = {apple, orange, rabbit}

Assuming d = 2, W € R>*?
f(apple) = [1.0 1.0]
florange) = [0.9 1.0]
f(rabbit) = [0.1 0.5]
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Dense continuous word similarities

A
fGapple) =11.0 1.0] .| orange o 2PPle
f(orange) = [0.9 1.0]
.rabbit
f(rabbit) = [0.1 0.5] cosine-sim (f(apple), f(orange)) ~ 0.999

>
cosine-sim (f(apple),f(rabbit)) ~ (0.8321

1
1

cosine-sim (f(orange), f(rabbit)) ~ 0.8601
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Learning representations

“You shall know a word Othe company it keeps”

John Rupert (J. R.) Firth (1957)
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Word co-occurrences

‘... comparing an apple to an orange...”
“... an apple from ltaly and an orange from Spain...”

“... my rabbit does not like orange juice...”
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Sparse word co-occurrence representations

Record the number of times words co-occur
in a collection of documents (corpus)

2 2 0O]apple
Ce N\Wb(\%\ e.8. C= 2 3 ]| orange
O 1 1 rabbit
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Similarities based on a co-occurrence matrix

2 2 0] apple
Ce N‘%‘X‘%‘ e€.g C= 2 3 1| orange
O 1 1 rabbit

cosine-sim (f(apple), f(orange)) ~ 0.995
cosine-sim (f(apple),f(rabbit)) = 0.5

cosine-sim (f(orange), f(rabbit)) ~ 0.756

COMPO0O087 - Manual feature engineering / Linear models and classification
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Dense continuous representations via matrix factorisation (SVD)

2 2 0] apple
C e N‘%‘X‘%‘ e.8. C= 2 3 ]| orange
() 1 1 rabbit
v
7| Xd
C ~ |U Uel
V € dX |7
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Dense continuous representations via matrix factorisation (SVD)

¥ C e NI7IXI7
C ~ |U U e RI7Ixd
V € R4XI7]
—1.26 0.65 | apple A
Let’'s assumethat U = | —1.72 —0.24 | orange
—0.46 —0.89 | rabbit o 200l

( J
rabbit
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Dense continuous representations — Cosine similarity

—1.26  0.65 | apple .
Let’'s assumethat U= | —-1.72 —0.24 | orange
—046 —089 rabbit o apple
orange »>
cosine-sim (f(apple), f(orange)) ~ 0.817 i

cosine-sim (f(apple),f(rabbit)) ~ 0.001

cosine-sim (f(orange),f(rabbit)) ~ 0.578
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Learning by slot filling — Word embeddings

“l had with milk for breakfast today.”

» Good: cereals
» Acceptable (?): pizza
» Bad: songs

“Pink Floyd have become numb.”

» Good: comfortably
» Acceptable (?): very
» Bad: dysfunctional
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Neural word representations — Cosine similarity
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(apple), f(rabbit) ) ~ 0.094
(orange), f(rabbit) ) ~ 0.091
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