Information Retrieval & Data Mining [COMP0084]

Text processing and indexing

Vasileios Lampos
Computer Science, UCL

Bl ampos.net @lampos

https://twitter.com/lampos
https://lampos.net

Preliminaries — About me!

» [Vasileios = or Bill] Lampos
» Associate Professor at the Computer Science department (2021)

» Been @ UCL Computer Science for > 10 years

» Main research themes: Natural Language Processing, time series forecasting (machine
learning), health applications

» [nformation about my research at my personal / academic website: lampos.net
» Publications: scholar.google.com/citations?user=eXDONDEAAAAJ

» Tweets at: twitter.com/lampos

» |Interested in a PhD? See: lampos.net/join-us

» |nterested in an MSc project with me? See: lampos.net/teaching/ML-MSc-projects.pdf

COMPO0084 - Text processing and indexing 2

https://lampos.net
https://scholar.google.com/citations?user=eXDONDEAAAAJ
https://twitter.com/lampos
https://www.lampos.net/join-us
https://www.lampos.net/teaching/ML-MSc-projects.pdf

Preliminaries — A few words about me and COMP0084 or IRDM

» Will do ~30% of COMPO0084’s lectures
» Wil run and lead the marking of Coursework 1 which is 50% of the final mark
» Will not be involved with Coursework 2

» Not the module lead, hence when “in crisis” please email Prof. Ingemar Cox

COMPO0084 - Text processing and indexing 3

Preliminaries — About this lecture

» |In this lecture (first hour):

— basic text processing steps

— Inverted index

— Zipf's law, Heaps’ law (text statistics)
— brief overview of Coursework 1

» NB: Topics discussed in this lecture are very relevant to Coursework 1

» Some material can be found in (plus a great resource for further reading):
Chapters 1, 2, and section 5.1 of the [IIR] book: “An Introduction to Information Retrieval” by
Manning, Raghavan, and Schuitze (2009) — nlp.stanford.edu/IR-book/information-retrieval-book.html

COMP0084 - Text processing and indexing

https://nlp.stanford.edu/IR-book/information-retrieval-book.html

Text processing — Applications

» Search engines GO gle

» Advertising

» Autocorrection, autocompletion, grammar check

<|||

» Machine translation

» Chatbots / natural language generation X

O\ Meta
» Text-driven analytics (sentiment, opinions, health)
» News (topic models, summarisation) @ OpenAI

» Email filters (spam, categorisation)

COMPO0084 - Text processing and indexing 5

Text processing — Basic steps

» Document unit
book, book chapter, news article,
paragraph, sentence, tweet,
search query, fixed window of terms
— we have a set of document units
a.k.a. a corpus

» Depending on the task and the
machine learning methods that are
going to be deployed some
processing steps are not applicable
or may not be required

» The order in this diagram is not
necessarily rigid (e.g. parsing can
also take place after tokenisation)

COMPO0084 - Text processing and indexing

* optional

Text processing — Parsing & tokenisation

Parsing
— easily applicable if the file is not raw text, e.g. JSON, HTML

— the parser identifies structural elements (e.g. titles, links, headings)
Tokenisation
the task of chopping up a document unit into pieces, called tokens

Sentence: “They won't let you fly, but they might let you sing.”
Tokens: [They] [won't] [let] [vou] [fly] [] [but] [they] [might] [\et] [you] [sing] [.]

Tokens need to be turned to terms, i.e. processed tokens that will be
maintained in our vocabulary index

But tokens may not always be valid words of a spoken language. Why?

Not necessarily an easy task even for English and definitely harder in
some other languages: punctuation, hyphens, capitalisation, numbers,
separators, segmentation (where does a word end)

COMP0084 - Text processing and indexing

Parsing

v

Tokenisation

* optional

Tokenisation of English — More challenging examples

@RandomTwitterUser:

another day of the my | Feel
- | , are Ithere?
The first example was the initial preparation of
followed by coupling

with dipropargyl ether in dimethylformamide (DMF) in the presence of a

CuBr/N,N,N’N ;N "“pentamethyldiethylenetriamine catalyst

From: K. Matyjaszewski, Adv. Mater. 2018, 30, 1/06441.

COMPO0084 - Text processing and indexing 8

Text processing — Normalisation

Normalisation
the process of canonicalising tokens so that during indexing matches
occur despite of superficial differences in the character sequences

Ease grouping of tokens (into a single vocabulary term) with minor
differences caused by the use of punctuation, diacritics, accents,

hyphens

“U.K” ~ “UK” “naive” ~ “naive”

(() (()) ((‘)) (*))
don't” ~ "dont co-exist’ ~ “coexist

Challenge: maintain upper case, establish a conditional upper case, or
lower case everything?

“Windows” the operating system vs. “windows” in a house

“Bill” the name vs. “bill” the check

Hard task to get right — the type of each token needs to be known,
depends on context

COMP0084 - Text processing and indexing

* optional

Text processing — Stop word removal

» Stop words
extremely common (very frequent) words that do not add to the meaning

of a document unit, but exact definition depends on the set of decisions
we make (linked to the target task) in order to identify stop words.

-xamples: “the” “an”, “to”, “so”, “then”

Benefits: reduces number of features / dimensionality and helps derive
models that can generalise better, saves storage / memory space

(perhaps not very relevant nowadays!)
Issues: might remove some meaning from the text

e.g. “flights to London” — if we remove “to” as a stop word, then we don’t
know whether this text snippet is about flights “to” or “from” London

COMP0084 - Text processing and indexing

* optional

10

Text processing — Stop word removal

» Could be determined using a predefined list and/or automatically, e.g.
the most frequent terms in very large corpus

» Bag-of-words models (each term is considered in isolation) could benefit
from stop word removal, but modern language models (e.g. BERT or GPT
variants) might not as stop words can add to the semantic interpretation
of text

» Should we remove stop words? Depends on the method used and the
target task. Most of the times the downstream task accuracy can be
measured, and we can actually see whether removing stop words helps
or not and how much.

COMP0084 - Text processing and indexing

* optional

11

Text processing — Lemmatisation

» Lemmatisation
Returns the base (dictionary) form of a word, which is known as the
lemma.

“organises” or “organising” to “organise”
“cars” to “car”
“saw” to “see” (if “saw” is a verb)

» Does things “properly’, i.e. requires a complete vocabulary and
morphological analysis (needs to know what part of speech is the target
word for example), aiming to remove inflectional endings only

* optional

COMPO0084 - Text processing and indexing 12

Text processing — Stemming

» Stemming

Crude heuristic process that uses a stemmer (stemming algorithm) in an
attempt to reduce inflected (or derived) words / tokens to their word
stem (root form) — the stem, i.e. the output of a stemmer is very often
not a vocabulary word

“cars” to “car”

“organises” or “organising” to “organis”

“story” or “stories” to “stori”

» Most common algorithms: Porter and Porter 2 (snowball) stemmer
tartarus.org/martin/PorterStemmer

snowball.tartarus.org/algorithms/english/stemmer.html

follows a set of complex rules (easier to deploy than a lemmatiser)

removes the most common morphological and inflexional endings from
words / tokens

COMP0084 - Text processing and indexing

* optional

13

https://tartarus.org/martin/PorterStemmer/
http://snowball.tartarus.org/algorithms/english/stemmer.html

Text processing — Lemmatisation & stemming

» Do lemmatisation and/or stemming significantly improve the accuracy in
downstream tasks?

— Not necessarily, at most very modest benefits for English
— Stemming helps other languages though such as German

» |ncrease recall while harming precision, i.e. we will most definitely obtain
all relevant documents, but together with them we will also obtain many
iIrrelevant ones

query: “operating” AND “system”

If we assume Porter stemming is applied this will return documents that
have the stems “oper” AND “system”

however, this includes documents with the words “operational” AND
“system” that are not a good match

COMP0084 - Text processing and indexing

* optional

14

Text processing — Vocabulary

» Finally, we obtain a vocabulary, an index of unique terms that are
either proper words or derived non-vocabulary terms

» Optionally, we can further remove very rare terms, e.g. the ones
that appear only one time

COMPO0084 - Text processing and indexing

* optional

l

Vocabulary

15

Text processing — Inverted index

» Index
A common way to think about an index is that a document in our collection will be
represented as a set of indices of the terms in it. Hence:
document —> terms —> index of terms in our vocabulary

» Inverted index
works the other way around, hence the “inverted” connotation
terms in our vocabulary —> list of documents in our collection they appear in

Fair to say that “inverted” could be considered as redundant — we are not really inverting
anything, and it is actually a common way of indexing.

Why use it: improves search / retrieval speed
NB: storage overhead, additional cost for adding / removing / updating documents

» Apart from a document index, an inverted index could also hold additional information, e.g.
— number of times (count) the term appears in a certain document
— position in the document the term appears at
— number of terms in a document

COMP0084 - Text processing and indexing

16

D1:

Do:

Text processing — Inverted index, an example

And you run and you run to catch up with the sun, but it is
sinking, racing around to come up behind you again.

In my rear view mirror the sun is going down, sinking behind
bridges in the road.

. One day you find ten years have got behind you. No one told

you when to run, you missed the starting gun.

COMPO0084 - Text processing and indexing

17

Text processing — Inverted index, an example

Da1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
Do: In my rear view mirror the sun is going down, sinking behind bridges in the road.
D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

again: 1 have: 3 starting: 3
and: 1 in: 2 sun: 1,2
around: 1 1s: 1,2 ten: 3
behind: 1,2,53 1t: 1 the: 1,2,5
bridges: 2 mirror: 2 to: 1,3
but: 1 missed: 3 told: 3
catch: 1 my : 2 up: 1
come: 1 no: 3 view: 2
day: 3 one: 3 when: 3
down: 2 racing: 1 with: 1
find.: 3 rear: 2 years: 3
going: 2 road: 2 you: 1,3
got: 3 run: 1,53

gun: 3 sinking: 1,2

COMPO0084 - Text processing and indexing 18

Text processing — Inverted index, an example

Da1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
Do: In my rear view mirror the sun is going down, sinking behind bridges in the road.
D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

again: 1 have: 3 starting: 3
and: 1 in: 2 sun: 1,2
around: 1 1s: 1,2 ten: 3
behind: 1,2,53 1t: 1 the: 1,2,5
bridges: 2 mirror: 2 to: 1,3
but: 1 missed: 3 told: 3
catch: 1 my : 2 up: 1
come: 1 no: 3 view: 2
day: 3 one: 3 when: 3
down: 2 racing: 1 with: 1
find.: 3 rear: 2 years: 3
going: 2 road: 2 you: 1,3
got: 3 run: 1,53

gun: 3 sinking: 1,2

COMPO0084 - Text processing and indexing 19

Text processing — Inverted index, an example

Da1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
Do: In my rear view mirror the sun is going down, sinking behind bridges in the road.
D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

again: 1 have: 3 starting: 3
and: 1 in: 2 sun: 1,2
around: 1 1s: 1,2 ten: 3
behind: 1,2,53 1t: 1 the: 1,2,5
bridges: 2 mirror: 2 to: 1,3
but: 1 missed: 3 told: 3
catch: 1 my : 2 up: 1
come: 1 no: 3 view: 2
day: 3 one: 3 when: 3
down: 2 racing: 1 with: 1
find.: 3 rear: 2 years: 3
going: 2 road: 2 you: 1,3
got: 3 run: 1,53

gun: 3 sinking: 1,2

COMPO0084 - Text processing and indexing 20

Text processing — Inverted index, an example (term’s count)

Da1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
Do: In my rear view mirror the sun is going down, sinking behind bridges in the road.
Da: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

again: 1:1 have: 5:1 starting: 3:1
and: 1:2 in: 2:2 sun: 1:1,2:1
around: 1:1 1s: 1:1,2:1 ten: 5:1
behind: 1:1,2:1,5:1 1t: 1:1 the: 1:1,2:2,35:1
bridges: 2:1 mirror: 2:1 to: 1:2,3:1
but: 1:1 missed: 3:1 told: 5:1
catch: 1:1 my : 2:1 up: 1:2
come: 1:1 no: 5:1 view: 2:1
day: 5:1 one: 5:2 when: 5:1
down: 2:1 racing: 1:1 with: 1:1
find.: 5:1 rear: 2:1 years: 5:1
going: 2:1 road: 2:1 you: 1:3,35:4
got: 5:1 run: 1:2,5:1

gun: 5:1 sinking: 1:1,2:1

COMPO0084 - Text processing and indexing 21

Text processing — Inverted index, an example (term’s count)

€C o b}

query: “sun” AND is AND “going” AND “up”
{1:1, 2:1) + {1:1, 2:1}y + {2:1} + {1:2} => D1:4, D2:3, D3:0

Hence the response to this query (ranked list of documents) by using a very naive retrieval approach
would be D1, then D2, then D3.

again: 1:1 have: 5:1 starting: 3:1
and: 1:2 in: 2:2 sun: 1:1,2:1
around: 1:1 1s: 1:1,2:1 ten: 5:1
behind: 1:1,2:1,5:1 1t: 1:1 the: 1:1,2:2,35:1
bridges: 2:1 mirror: 2:1 to: 1:2,3:1
but: 1:1 missed: 3:1 told: 5:1
catch: 1:1 my : 2:1 up: 1:2
come: 1:1 no: 5:1 view: 2:1
day: 5:1 one: 5:2 when: 5:1
down: 2:1 racing: 1:1 with: 1:1
find.: 5:1 rear: 2:1 years: 5:1
going: 2:1 road: 2:1 you: 1:3,35:4
got: 5:1 run: 1:2,5:1

gun: 5:1 sinking: 1:1,2:1

COMPO0084 - Text processing and indexing 22

Text processing — Inverted index, an example (term’s position)

Da1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
Do: In my rear view mirror the sun is going down, sinking behind bridges in the road.

Da: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

again: 1:24 in: 2:1, 2:14 sun: 1:12, 2:7

and: 1:1, 1:4 1S: 1:15, 2:8 ten: 3:5

around: 1:18 1t: 1:14 the: 1:11, 2:6, 2:15
behind: 1:22, 2:12,5:9 mirror: 2:5 5:20

bridges: 2:153 missed: 5:19 to: 1:7, 1:19, 3:16
but: 1:153 my : 2.2 told: 3:153

catch: 1:8 no: 5:11 up: 1:9, 1:21

come: 1:20 one: 5:1, 5:12 view: 2:4

day: 5:2 racing: 1:17 when: 3:15

down: 2:10 rear: 2:5 with: 1:10

find.: 5:4 road: 2:16 years: 35:6

going: 2:9 run: 1:5, 1:6, you: 1:2, 1:5, 1:25,
got: 5:8 53:17 5:5%5, 3:10, 5:14,
gun: 5:22 sinking: 1:16, 2:11 5:18

have: 5:7 starting: 3:21

COMPO0O084 - Text processing and indexing 23

Text statistics — Zipfian distribution

k:s,N) =
s) =5
i=1

» Power law, named after linguist G. K. Zipf o N | S

\\ '

» [top] The (normalised) frequency (f) of avariable 1| : — -
is inversely related to the variable’s frequency - ‘\ N :
rank (k) in a set of /V variables, controlled by 10-2;_ o« O AN .
parameter s > 0. ' i | | :

o s=2) o

» [right] The log-log plot of the probability mass 0 E oo " " ;
function (PMF) defined for (discrete) values of k '
fors = {1,2,3,4},and N = 10. 0= | 1

Source: Wikipedia (en.wikipedia.org/wiki/Zipf%27s_law)

COMP0084 - Text processing and indexing

24

https://en.wikipedia.org/wiki/Zipf%27s_law

Text statistics — Zipf’s law

—3

Zipfian distribution: f(k; s, N) =

N

F—S
i—1 "

Zipf's law sets s = 1, hence: f(k; N) =

N .
k Zi:l 1
——

» a few words occur very often, and many words hardly ever occur

» Zipf's law characterises the frequency distribution of terms in a (large) collection of
documents (corpus)

» Specifically, it suggests that the rank of a term times its frequency (k f) IS constant

COMPO0084 - Text processing and indexing 25

Text statistics — Zipf’s law, an example

Based on the Twitter data

used in a paper of ours
aclanthology.org/E14-1043.pdf

~50 million tweets

/1,555 terms in the
vocabulary

Top-40 terms based on their
normalised frequency

w(rank*frequency) = 0.036
o(rank*frequency) = 0.021

15000

10000 ¢

Number of terms

)]
o
o
o

0.02 0.04 0.06 0.08 0.1 0.12 0.14
frequency * rank

word
the

rank frequency rank*frequency

N O NONULTDNOWDN PP

N PR R PR RPRRPRPLPRRLRRPL R R
O vV o NN P~ WINEFO

0.03145
0.02441
0.02224
0.01976
0.01418
0.01384
0.01347
0.01285
0.01228
0.01108
0.01103
0.00985
0.00933
0.00638
0.00633
0.00621
0.00584
0.00581
0.00574
0.00567

0.03145
0.04882
0.06672
0.0/7903
0.07091
0.08306
0.09427
0.10281
0.11055
0.11076
0.12133
0.11826
0.12131
0.08930
0.09498
0.09933
0.09923
0.10457
0.10903
0.11332

COMP0084 - Text processing and indexing

rank frequency rank*frequency

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

0.00548
0.00493
0.00446
0.00432
0.00426
0.00407/
0.00402
0.00398
0.00386
0.00385
0.00358
0.00357
0.00349
0.00341
0.00332
0.00329
0.00318
0.00297
0.00296

0.00290

0.11510
0.10850
0.10259
0.10358
0.10652
0.10980
0.11256
0.11531
0.11569
0.11924
0.11460
0.11779
0.11859
0.11924
0.11945
0.12182
0.12086
0.11594
0.11846

0.11875

26

https://aclanthology.org/E14-1043.pdf

0.09

0.08

Term prob. of occurrence
O O © © O
o o o o o
w B~ 0) (@) ~

O
o
N

Text statistics — Zipf’s law, an example

—— data

= = theory (Zipf's law) |-

2

3 4 5 6 7
Term frequency ranking «10*

0.09

0.08

Term prob. of occurrence
© o o o o
o o o - o
w NAN &) (@) ~

o
@)
N

200

——data
= = theory (Zipf's law) |

400 600 800 1000
Term frequency ranking

» probability of occurrence (normalised frequency) of a term vs. the term’s ranking
» all 71,555 terms (left), top-1000 most frequent terms (right)

» practice seems to be following theory, but from these plots it is quite unclear

COMPO0084 - Text processing and indexing

27

Text statistics — Zipf’s law, an example

» Log-log plot provides a much SR : |7 _gata
g-10g PIoOL P | - - theory (Zipf's law) |-

better visual confirmation

» Zipf's law proposes that this
relationship is “constant” (straight
line in the log space)

» Practice follows theory quite well,
but not entirely

Term prob. of occurrence (log)

» What will happen to this plot if we
remove stop words from our

vocabulary? Coursework 1. 10° 10’ 102 103 104 105
Term frequency ranking (log)

COMPO0O084 - Text processing and indexing 28

Text statistics — Zipf’s law, an example

word rank frequency rank*frequency
Zipf's law suggests that rank * frequency = C G 1 003145 0.03145
, , . , 2 002441 0.04882
What is the proportion of terms with a certain 3 002224 0.06672
5 001418 0.07091
A term that has a frequency f has an estimated rank ? g-gigi‘; 8-8222?
ke = C/f and hence the proportion of terms with 8 001285 0.10281
. . . 9 001228 0.11055
frequency higher or equal to fis k;/N where N is the 10 001108 011074
size of our vocabulary 11001103 0.12133
o | | 12 000985 0.11826
Similarly, the proportion of terms with a frequency 13 0.00933 0.12131
<y < hic ot (B) 14 000638 0.08930
a <x<bisgivenby (k,—k,+ 1)/N 't 000633 000408
=5 3 e 16 000621 0.09933
If we set a = 1077 and b = 107" then Zipf’s law 17 000584 009993
indicates that our corpus should have 11.9% of terms 18 0.00581 0.10457
within that range (when empirically we have 9.3%) 19000574 0.10903
20 0.00567 0.11332

COMP0084 - Text processing and indexing

29

Text statistics — Heaps' law

M = kTP or log(M) = log(k) + flog(T)

M is the size of the vocabulary and 7 is the number of tokens

common parameter values: k € [10,100], f € [0.4,0.6]

» Heaps’ law captures how the size of the vocabulary (unique terms) grows with the size of
the corpus (humber of tokens)

— no upper bound because of typos, novel terms (e.g. social media hashtags)
— however, new terms occur less frequently as the vocabulary grows
— still, the vocabulary size will become very large for very large corpora

» Heaps' law can be derived from Zipf's law by assuming documents are generated by
randomly sampling words from a Zipfian distribution

COMP0084 - Text processing and indexing

30

Text statistics — Heaps’ law, an example (lIR, Chapter 5)

» Corpus: 800K news articles from the
Reuters RCV1 data set

jmlr.csail.mit.edu/papers/volume5/lewisO4a/

» Best least squares fit]
IOgloM = 0.49 X lOglo T+ 1.64 > % ® o

M ~ 44 TP

» Hence k =44 and f = 0.49

» For the first 1,000,020 tokens Heaps’ law
predicts a vocabulary size of 38,323 terms | | | | |
— the actual number is 38,365 (very close!)

log10 T

Source: Fig. 5.1 of IR (2009 edition)

COMPO0084 - Text processing and indexing 31

https://jmlr.csail.mit.edu/papers/volume5/lewis04a/

Text statistics — Heaps’ law, another example

Vocabulary of size 100,000 — term frequencies follow Zipf's law

We first draw 25K terms (/) from the Zipfian distribution of 100,000 terms (recall, we set
s = 1). Because we are sampling, the terms we draw most likely are not going to be

unique. We see how many unique terms exist in this draw (M). This pair {1, M} of

variables is our first sample, i.e. number of drawn terms (tokens) and the number of unique
terms, respectively. Then we repeat by increasing the number of terms we draw by 25K
(=50K), and continue doing so until we reach 1.5 million tokens (60 samples obtained).

Best least squares fit in these 60 samples

In(M) = 0.5107 X In(T) + 4.252 = M ~ 70.248 017
Hence k = 70.248 and f = 0.5107

If we assume an exponential relationship between M and 7, then this is captured well by
Heaps’' law.

Optional exercise: Can you replicate this experiment?

COMPO0O084 - Text processing and indexing 32

>

About Coursework 1

50% of the final mark

Data set: 200 search queries, for each one 1,000 passages that were returned

Tasks: text processing and analysis, inverted index implementation, (re-)rank the passages
for each query based on basic retrieval and query likelihood language models

Give extra attention the following

marking will be partially automated — please follow instructions to the letter!

following the instructions also means no penalties

Python (recommended), Java (permitted), no notebook submissions, each task asks for
specific output — filename/type, a submission will consist of 10 or 11 files exactly
your answers will have a level of stochasticity

do not use external functions that can solve end-to-end the tasks of building an
inverted index, retrieval and language models

only use unigram (1-gram) text representations

use the ACL LaTeX template for your report

COMPO0O084 - Text processing and indexing 33

About Coursework 1 — Questions, support, basic code of conduct

Deadline: February 26, 2025 at 4pm
1 support session every week: Thursdays from 16:30 to 17:30
Q & A about Coursework 1 on February 5 at 11am (1st hour of the lecture)

Only 2 emails allowed per student about Coursework 1 [v.iampos@ucl.ac.uk | — you can
contact the TAs for further support

Do not post anything about Coursework 1 on the course’s forum or in any public medium

| might send announcements with further clarifications about Coursework 1 to the entire
class. These will be posted as an announcement on Moodle.

Please do not send me questions about Coursework 2.

Marks are expected to be released by the end of March. Please note that if there are many
EC extensions, the mark release date might be delayed.

COMPO0O084 - Text processing and indexing 34

mailto:v.lampos@ucl.ac.uk

About Coursework 1 — Hints

» My not very optimal code that solves Coursework 1 runs on a 1st generation Macbook
Pro M1 (8 CPU/GPU cores, 16GB RAM) in about 12 minutes / on an M3 Max in about 6

minutes

» Having said that, the inverted index implementation might need some extra care to avoid
getting out-of-memory and parallel processing to avoid becoming overly slow

COMPO0084 - Text processing and indexing 35

