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Structure of the presentation

1. Introductory remarks 

2. Collective inference tasks 
— Mining emotions 
— Modelling voting intention 

3. Personalised inference tasks 
— Occupational class  
— Income  
— Socioeconomic status 

4. Concluding remarks



Context and motivation

How can we use online user-generated content to  
enhance our understanding about our world?

the Internet, the World Wide Web, connectivity

numerous web products feeding from user activity

user-generated content, publicly available, esp. on 
social media platforms (e.g. Twitter)

large-scale digitised data, ‘Big Data’, ‘Data Science’
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About Twitter

> 140 characters per published status (tweet) 
> users can follow and be followed 
> embedded usage of topics (using #hashtags) 
> user interaction (re-tweets, @mentions, likes) 
> real-time nature 
> biased demographics (13-15% of UK’s 

population, age bias etc.) 
> information is noisy and not always accurate



Inferring collective information  
from user-generated content

Lampos (Ph.D. Thesis, 2012) 
Lansdall-Welfare, Lampos & Cristianini (WWW 2012) 
Lampos, Preotiuc-Pietro & Cohn (ACL 2013)

mood / emotions

voting intention

http://arxiv.org/pdf/1208.2873v1.pdf
http://www.lampos.net/sites/default/files/papers/lansdall2012recession.pdf
http://www.aclweb.org/anthology/P13-1098.pdf


Emotion taxonomies and quantification

‘Emotional’ keywords, representing  
+ anger, e.g. angry, irritate 
+ fear, e.g. fearful, afraid 
+ joy, e.g. cheerful, enthusiastic 
+ sadness, e.g. depressed, gloomy 
+ plus other emotions

> WordNet Affect 
> Linguistic Inquiry and Word Count (LIWC)

(Strapparava & Valitutti, 2004; Pennebaker et al., 2001, 2007)

Simply — but maybe not good enough! — we compute 
the mean keyword frequency score per emotion
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Circadian emotion patterns from Twitter (UK) 4

Winter Summer

Figure 1. Plots representing the variation over a 24-hour period of the emotional valence

for fear, sadness, joy and anger. The red line represents days in the winter, while the green one
represents days in the summer. The average circadian pattern was extracted by aggregating the two
seasonal data sets. Faded colourings represent the SE of the sample mean.

emotion of joy has the highest levels of autocorrelation showing the strongest periodic behaviour, whereas
periodicity seems to be less strong for the mood type of anger.

Discussion

As far as we are aware this is the first study of real-time mood variation at a population level using
Social Media information in the UK. Similar studies have been proposed for other populations, and in
this respect our study is a novel contribution to the literature in the subject [11, 12]. This study shows
that it is possible to estimate aggregate mood states in a large population by analysing the contents of
its communications via Social Media. We detected a strong circadian pattern for all the emotions we
investigated, in keeping with previous studies [11,12]. However, we found that mood patterns for sadness
did not agree with currently held clinical concepts of diurnal variation of mood or increased prevalence
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24h emotion patterns for ‘joy’ and ‘sadness’ for summer 
and winter with 95% confidence intervals 



‘Joy’ time series based on Twitter (UK)

27august2012

We turned our attention to the issue of 
public mood, or sentiment. Our goal was to 
analyse the sentiment expressed in the collec-
tive discourse that constantly streams through 
Twitter. Or – as we called it – the mood of 
the nation. 

We used tweets sampled from the 54 larg-
est cities in the UK over a period of 30 months. 
There were more than 9 million different users, 
and 484 million tweets. It is important to notice 
that studies of this kind rely on very efficient 
methods of data management and text mining, 
which we have been refining for years, during 
our studies of news content5, as well as social 
media content. Our infrastructure is based on 
a central database, and multiple independent 
modules that can annotate the data6.

Notice also that the period we analysed 
goes from July 2009 to January 2012, a period 
marked by economic downturn and some so-
cial tensions. This will become relevant when 
analysing our findings.

There are standard methods in text analy-
sis to detect sentiment: they are used mostly 
in marketing research, when analysts want to 
know the opinion of users of a certain camera, 
or viewers of a certain TV show. Each of the 
basic emotions (fear, joy, anger, sadness) is 
associated with a list of words, generated by 
a combination of manual and automatic meth-
ods, and successively benchmarked on a test 
set. This is called citation-sentiment analysis. 
We did not want to develop a new method 
for sentiment analysis, so we directly applied 
a standard one to the textual stream generated 
by UK Twitter users. We sampled the tweet-
stream every 3 to 5 minutes, specifying location 
to within 10 km of an urban centre. Our word-
list contained 146 anger words, 92 fear words, 
224 joy words and 115 sadness words. They 

can be found at the WordNet-Affect website 
(http://wordnet.princeton.edu)7.

In the flu project we had a “ground truth”, 
of independently-measured flu cases. This 
time around we did not, as no one seems to be 
constantly measuring sentiment in the general 
population. This means that the methods and 
the conclusions will be of a different nature. 
Whereas in the flu project the list of keywords 
(whose frequency is used to compute the flu 
score) is discovered by our algorithm, with 
the goal of maximising correlation with the 
ground truth, in the mood project we had to 
feed the key words in ourselves – we got them 
from citation-sentiment analysis as mentioned 
above – and we have no ground truth to com-
pare the result with. 

By applying these tools to a time series of 
about 3 years of Twitter content we found that 
each of the four key emotions changes over 
time, in a manner that is partly predictable (or 
at least interpretable). We were reassured to 
find there was a periodic peak of joy around 

Christmas (Figure 2) – surely due to greetings 
messages – and a periodic peak of fear around 
Halloween, again probably due to increased 
usage of certain keywords such as ‘scary’. These 
were sanity checks, which showed us that 
word-counting methods can provide a reason-
able approach to sentiment or mood analysis. 
How far Christmas greetings accurately repre-
sent real joy, as opposed to duty and wishful 
thinking, is of course another question. We do 
not expect that a high frequency of the word 
‘happy’ necessarily signifies happier mood in 
the population. Our measures of mood are not 
perfect, but these effects could be filtered away 
by a more sophisticated tool designed to ignore 
conventional expressions such as ‘Happy New 
Year’. It is, however, a remarkable observation 
that certain days have reliably similar values 
in different years. This suggests that we have 
reduced statistical errors to a very low level.

But what came out most strongly is the 
strong transition, towards a more negative 
mood, that started in the week of October 20th, 
2010. This was the week that the Prime Minis-
ter Gordon Brown announced massive cuts in 
public spending. It was a clear change point that 
we could validate by a statistical test. It was, if 
you like, the moment that people realised that 
austerity was not just for others; it would be 
affecting their own lives too. The effects of that 
major shift in collective mood are still felt today.

We also found a sustained growth in an-
ger (Figure 4) in the weeks leading up to the 
summer riots of August 2011, when parts of 
London and several other cities across England 
suffered widespread violence, looting and arson.  

It is interesting that the growth in anger 
seems to have started before the riots them-
selves, but this does not mean that we could 

Figure 1. A word cloud automatically generated from Twitter traffic. The larger the word, the greater the 
correlation with flu epidemics. Upside-down words have negative correlations

Figure 2. Plot of the time series representing levels of joy estimator over a period of 2½ years. Notice the peaks 
corresponding to Christmas and New Year, Valentine’s day and the Royal Wedding
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Recession, riots, and Twitter emotions (UK)
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Inferring voting intention — Data sets

+ 3 political parties (Conservatives, Labour, Lib Dem) 
+ 42,000 Twitter users distributed proportionally to UK’s 

regional population figures 
+ 60 million tweets, 80,976 1-grams 
+ 240 polls from 30 Apr. 2010 to 13 Feb. 2012

United Kingdom

+ 4 political parties (SPO, OVP, FPO, GRU) 
+ 1,100 active Twitter users selected by political scientists  
+ 800,000 tweets, 22,917 1-grams 
+ 98 polls from 25 Jan. to 25 Dec. 2012

Austria
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Bilinear (users+text) regularised regression
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Bilinear elastic net (BEN)
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Training bilinear elastic net (BEN)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.4

0.8

1.2

1.6

2

2.4

Step
 

 
Global Objective
RMSE

Global objective function 
during training (red) 

Corresponding prediction 
error on held out data (blue)

Biconvex problem  
+ fix u, learn w and vice versa 
+ iterate through convex optimisation tasks

(Mairal et al., 2010)Large-scale solvers in SPAMS

f(xi) = x

T
i w + �

f (Qi) = u

T
Qiw + �

f (Qi) = tr

�
U

T
QiW

�
+ �

argmin

w,�

8
<

:

nX

i=1

0

@
yi � � �

mX

j=1

xijwj

1

A
2

+ �1

mX

j=1

|wj |+ �2

mX

j=1

w

2
j

9
=

;

argmin

u,w,�

(
nX

i=1

�
u

T
Qiw + � � yi

�2
+  (u, ✓u) +  (w, ✓w)

)

 (x,�1,�2) = �1kxk`1 + �2kxk2`2

6



Training bilinear elastic net (BEN)
Bilinear Elastic Net (BEN)

argmin
u

u

u,w

w

w,—

I
nÿ

i=1

1
u

u

u

T
Q

Q

Q

i

w

w

w + — ≠ y

i

22
BEN’s objective function

+ ⁄

u1Îu

u

uÎ2
¸2 + ⁄

u2Îu

u

uÎ
¸1

+ ⁄

w1Îw

w

wÎ2
¸2 + ⁄

w2Îw

w

wÎ
¸1

J

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.4

0.8

1.2

1.6

2

2.4

Step
 

 
Global Objective
RMSE

Figure 2 : Objective function
value and RMSE (on hold-out
data) through the model’s
iterations

• Bi-convexity: fix u

u

u, learn w

w

w and vv
• Iterating through convex

optimisation tasks: convergence
(Al-Khayyal & Falk, 1983; Horst & Tuy, 1996)

• FISTA (Beck & Teboulle, 2009)
in SPAMS (Mairal et al., 2010):
Large-scale optimisation solver,
quick convergence

V. Lampos v.lampos@ucl.ac.uk Bilinear Text Regression and Applications 18/45
18

/45

Global objective function 
during training (red) 

Corresponding prediction 
error on held out data (blue)

Biconvex problem  
+ fix u, learn w and vice versa 
+ iterate through convex optimisation tasks

(Mairal et al., 2010)Large-scale solvers in SPAMS

f(xi) = x

T
i w + �

f (Qi) = u

T
Qiw + �

f (Qi) = tr

�
U

T
QiW

�
+ �

argmin

w,�

8
<

:

nX

i=1

0

@
yi � � �

mX

j=1

xijwj

1

A
2

+ �1

mX

j=1

|wj |+ �2

mX

j=1

w

2
j

9
=

;

argmin

u,w,�

(
nX

i=1

�
u

T
Qiw + � � yi

�2
+  (u, ✓u) +  (w, ✓w)

)

 (x,�1,�2) = �1kxk`1 + �2kxk2`2

6



Bilinear and multi-task regression
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Bilinear Group L2,1 (BGL)

+ a nonzero weighted feature (user or word) is 
encouraged to be nonzero for all tasks, but with 
potentially different weights 

+ intuitive for political preference inference

Bilinear Multi-Task Learning
• tasks · œ Z+

• users p œ Z+

• observations Q

Q

Q

i

œ Rp◊m

, i œ {1, ..., n} — XXX
• responses y

y

y

i

œ R·

, i œ {1, ..., n} — Y

Y

Y

• weights, bias u

u

u

k

,w

w

w

j

,—

—

— œ R·

, k œ {1, ..., p} — U

U

U, W

W

W, —

—

—

j œ {1, ..., m}

f (QQQ
i

) = tr
1
U

U

U

T
Q

Q

Q

i

W

W

W

2
+ —

—

—

◊ ◊

U

U

U

T
Q

Q

Q

i

W

W

W

v.lampos@ucl.ac.uk Slides: http://bit.ly/1GrxI8j 23/45
23

/45

f(xi) = x

T
i w + �

f (Qi) = u

T
Qiw + �

f (Qi) = tr

�
U

T
QiW

�
+ �

6

f(xi) = x

T
i w + �

f (Qi) = u

T
Qiw + �

f (Qi) = tr

�
U

T
QiW

�
+ �

6

f(xi) = x

T
i w + �

f (Qi) = u

T
Qiw + �

f (Qi) = tr

�
U

T
QiW

�
+ �

6

f(xi) = x

T
i w + �

f (Qi) = u

T
Qiw + �

f (Qi) = tr

�
U

T
QiW

�
+ �

argmin

w,�

8
<

:

nX

i=1

0

@
yi � � �

mX

j=1

xijwj

1

A
2

+ �1

mX

j=1

|wj |+ �2

mX

j=1

w

2
j

9
=

;

argmin

u,w,�

(
nX

i=1

�
u

T
Qiw + � � yi

�2
+  (u, ✓u) +  (w, ✓w)

)

 (x,�1,�2) = �1kxk`1 + �2kxk2`2

argmin

U,W,���

8
<

:

⌧X

t=1

nX

i=1

�
u

T
Qiwt + �t � yti

�2
+ �u

pX

k=1

kUkk2 + �w

mX

j=1

kWjk2

9
=

;

6



Voting intention inference performance
Ro

ot
 M

ea
n 

Sq
ua

re
d 

Er
ro

r

0

1

2

2

3

UK Austria

1.4391.478
1.699

1.573
1.442

3.067

1.47

1.723
1.851

1.69

Mean poll
Last poll
Elastic Net (words)
BEN
BGL



Voting intention inference performance
Ro

ot
 M

ea
n 

Sq
ua

re
d 

Er
ro

r

0

1

2

2

3

UK Austria

1.4391.478
1.699

1.573
1.442

3.067

1.47

1.723
1.851

1.69

Mean poll
Last poll
Elastic Net (words)
BEN
BGL



Voting intention comparative plots
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Voting intention comparative plots
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Qualitative insights
Party Tweet Score User type

SPÖ 
centre

Inflation rate in Austria slightly down in 
July from 2.2 to 2.1%. Accommodation, 
Water, Energy more expensive.

0.745 Journalist

ÖVP 
centre 
right

Can really recommend the book “Res 
Publica” by Johannes #Voggenhuber! Food 
for thought and so on #Europe #Democracy

-2.323 Normal 
user

FPÖ  
far right

Campaign of the Viennese SPO on “Living 
together” plays right into the hands of right-
wing populists

-3.44 Human 
rights

GRÜ 
centre 

left

Protest songs against the closing-down of the 
bachelor course of International 
Development: <link> #ID_remains 
#UniBurns #UniRage

1.45 Student 
Union



Inferring user-level information  
from user-generated content

Preotiuc-Pietro, Lampos & Aletras (ACL 2015) 
Preotiuc-Pietro, Volkova, Lampos, Bachrach & Aletras 
(PLOS ONE, 2015) 
Lampos, Aletras, Geyti, Zou & Cox (ECIR 2016)

occupational class

income

socio-economic status (SES)

https://aclweb.org/anthology/P/P15/P15-1169.pdf
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138717
http://www.lampos.net/sites/default/files/papers/socioeconomic_status_twitter.pdf


Linguistic expression and demographics

“Socioeconomic variables are influencing language use.”

+ Validate this hypothesis on a broader, 
larger data set using social media 

+ Applications 
> research, as in computational social 

science, health, and psychology 
> commercial

(Bernstein, 1960; Labov, 1972/2006)



Standard Occupational Classification (SOC)
cation, outperforming competitive methods. The
best results are obtained using the Bayesian non-
parametric framework of Gaussian Processes (Ras-
mussen and Williams, 2006), which also accom-
modates feature interpretation via the Automatic
Relevance Determination. This allows us to get in-
sight into differences in language use across job
classes and, finally, assess our original hypothesis
about the thematic divergence across them.

2 Standard Occupational Classification

To enable the user occupation study, we adopt a
standardised job classification taxonomy for map-
ping Twitter users to occupations. The Standard Oc-
cupational Classification (SOC)1 is a UK govern-
ment system developed by the Office of National
Statistics for classifying occupations. Jobs are cate-
gorised hierarchically based on skill requirements
and content. The SOC scheme includes nine major
groups coded with a digit from 1 to 9. Each ma-
jor group is divided into sub-major groups coded
with 2 digits, where the first digit indicates the ma-
jor group. Each sub-major group is further divided
into minor groups coded with 3 digits and finally,
minor groups are divided into unit groups, coded
with 4 digits. The unit groups are the leaves of the
hierarchy and represent specific jobs related to the
group.

Table 1 shows a part of the SOC hierarchy. In to-
tal, there are 9 major groups, 25 sub-major groups,
90 minor groups and 369 unit groups. Although
other hierarchies exist, we use the SOC because
it has been published recently (in 2010), includes
newly introduced jobs, has a balanced hierarchy
and offers a wide variety of job titles that were
crucial in our data set creation.

3 Data

To the best of our knowledge there are no pub-
licly available data sets suitable for the task we
aim to investigate. Thus, we have created a new
one consisting of Twitter users mapped to their oc-
cupation, together with their profile information
and historical tweets. We use the account’s profile
information to capture users with self-disclosed
occupations. The potential self-selection bias is ac-
knowledged, but filtering content via self disclosure

1
http://www.ons.gov.uk/ons/

guide-method/classifications/

current-standard-classifications/

soc2010/index.html; accessed on 24/02/2015.

Major Group 1 (C1): Managers, Directors and Senior Officials
Sub-major Group 11: Corporate Managers and Directors

Minor Group 111: Chief Executives and Senior Officials
Unit Group 1115: Chief Executives and Senior Officials
•Job: chief executive, bank manager
Unit Group 1116: Elected Officers and Representatives

Minor Group 112: Production Managers and Directors
Minor Group 113: Functional Managers and Directors
Minor Group 115: Financial Institution Managers and Directors
Minor Group 116: Managers and Directors in Transport and Logistics
Minor Group 117: Senior Officers in Protective Services
Minor Group 118: Health and Social Services Managers and Directors
Minor Group 119: Managers and Directors in Retail and Wholesale

Sub-major Group 12: Other Managers and Proprietors
Major Group (C2): Professional Occupations

•Job: mechanical engineer, pediatrist
Major Group (C3): Associate Professional and Technical Occupations

•Job: system administrator, dispensing optician
Major Group (C4): Administrative and Secretarial Occupations

•Job: legal clerk, company secretary
Major Group (C5): Skilled Trades Occupations

•Job: electrical fitter, tailor
Major Group (C6): Caring, Leisure and Other Service Occupations

•Job: nursery assistant, hairdresser
Major Group (C7): Sales and Customer Service Occupations

•Job: sales assistant, telephonist
Major Group (C8): Process, Plant and Machine Operatives

•Job: factory worker, van driver
Major Group (C9): Elementary Occupations

•Job: shelf stacker, bartender

Table 1: Subset of the SOC classification hierarchy.

is widespread when extracting large-scale data for
user attribute inference (Pennacchiotti and Popescu,
2011; Coppersmith et al., 2014).

Similarly to Hecht et al. (2011), we first assess
the proportion of Twitter accounts with a clear men-
tion to their occupation by annotating the user de-
scription field of a random set of 500 users. There
were chosen from the random 1% sample, having at
least 200 tweets in their history and with a majority
of English tweets. There, we can identify the fol-
lowing categories: no description (12.2%), random
information (22%), user information but not occu-
pation related (45.8%), and job related information
(20%).

To create our data set, we thus use the user de-
scription field to search for self-disclosed job titles
provided by the 4-digit SOC unit groups, since
they contain specific job titles. We queried Twit-
ter’s Search API to retrieve for each job title a max-
imum of 200 accounts which best matched occupa-
tion keywords. Then, we aggregated the accounts
into the 3-digit (minor) categories. To remove po-
tential ambiguity in the retrieved set, we manually
inspected accounts in each minor category and fil-
tered out those that belong to companies, contain
no description or the description provided does not
indicate that the user has a job corresponding to
the minor category. In total, around 50% of the
accounts were removed by manual inspection per-

1755

9 major groups 

25 sub-major groups 

90 minor groups 

369 unit groups

provided by the  
Office for National 

Statistics (UK)



Standard Occupational Classification (SOC)

C1 — Managers, Directors & Senior Officials 
       (chief executive, bank manager) 

C2 — Professional Occupations (postdoc, pediatrist) 
C3 — Associate Professional & Technical 

       (system administrator, dispensing optician) 
C4 — Administrative & Secretarial (legal clerk, secretary) 
C5 — Skilled Trades (electrical fitter, tailor) 
C6 — Caring, Leisure, Other Service 

       (nursery assistant, hairdresser) 
C7 — Sales & Customer Service (sales assistant, telephonist) 
C8 — Process, Plant and Machine Operatives 

       (factory worker, van driver) 
C9 — Elementary (shelf stacker, bartender)

The 9 major occupational classes (C1-9)



Forming a Twitter user data set

+ 5,191 Twitter users mapped to their occupations, 
then mapped to one of the 9 SOC categories 

+ 10 million tweets 
+ Download the data set

% of users per SOC category

0

7

14
21

28

35

C1 C2 C3 C4 C5 C6 C7 C8 C9

http://www.lampos.net/sites/default/files/data/jobs.tar.gz


Twitter user attributes (18 in total)

number of 
— followers 
— friends 
— followers/friends (ratio) 
— times listed 
— tweets 
— favourites (likes) 
— unique @-mentions 
— tweets/day (avg.) 
— retweets/tweet (avg.)

proportion of  
— retweets done 
— non duplicate tweets 
— retweeted tweets 
— hashtags 
— tweets with hashtags 
— tweets with @-mentions 
— @-replies 
— tweets with links 
— tweets in English

Similarly to our paper  
for user impact estimation (Lampos et al., 2014)



Twitter user discussion topics (I)

Topics — Word clusters (#: 30, 50, 100, 200) 

+ SVD on the graph laplacian of the word by word 
similarity matrix using normalised PMI, i.e. a 
form of spectral clustering 

+ Word2vec (skip-gram with negative sampling) to 
learn word embeddings; pairwise cosine 
similarity on the embeddings to derive a word by 
word similarity matrix; then spectral clustering on 
the similarity matrix

(Bouma, 2009; von Luxburg, 2007)

(Mikolov et al., 2013)



Twitter user discussion topics (II)
Topic Most central words; Most frequent words

Arts archival, stencil, canvas, minimalist; art, design, print

Health chemotherapy, diagnosis, disease; risk, cancer, mental, stress

Beauty Care exfoliating, cleanser, hydrating; beauty, natural, dry, skin

Higher 
Education

undergraduate, doctoral, academic, students, curriculum; 
students, research, board, student, college, education, library

Football bardsley, etherington, gallas; van, foster, cole, winger

Corporate consortium, institutional, firm’s; patent, industry, reports

Elongated 
Words

yaaayy, wooooo, woooo, yayyyyy, yaaaaay, yayayaya, yayy; 
wait, till, til, yay, ahhh, hoo, woo, woot, whoop, woohoo

Politics religious, colonialism, christianity, judaism, persecution, 
fascism, marxism; human, culture, justice, religion, democracy



A few words about Gaussian Processes

Why do we use Gaussian Processes? 
+ Kernelised, models nonlinearities 
+ Interpretability (AutoRelevance Determination) 
+ Performance

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

C
w

=

P
x2c NPMI(w, x)

|c|� 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs xxx 2 Rd:

f(x

x

x) ⇠ GP(m(x

x

x), k(x

x

x,x

x

x

0
)) , (3)

where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx0), this is:

kard(xxx,xxx
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(xxx) , P(y = 1|xxx) = �(f(x

x

x))

in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs xxx 2 Rd:
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where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx0), this is:
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(xxx) , P(y = 1|xxx) = �(f(x

x

x))

in a similar way to logistic regression classification.
The object of the GP inference is the distribution

Say and we want to learn

Formally: Sets of random variables any finite number of 
which have a multivariate Gaussian distribution

mean function 
drawn on inputs

covariance function (kernel) 
drawn on pairs of inputs

(Rasmussen & Williams, 2006)



More information about Gaussian Processes

+ Book: “Gaussian Processes for Machine Learning” 
http://www.gaussianprocess.org/gpml/	

+ Video-lecture: “Gaussian Process Basics” 
http://videolectures.net/gpip06_mackay_gpb/	

+ Tutorial tailored to statistical NLP tasks: “Gaussian 
Processes for Natural Language Processing” 
http://people.eng.unimelb.edu.au/tcohn/tutorial.html 

+ Software I — GPML for Octave or MATLAB  
http://www.gaussianprocess.org/gpml/code 

+ Software II — GPy for Python 
http://sheffieldml.github.io/GPy/

http://www.gaussianprocess.org/gpml/
http://videolectures.net/gpip06_mackay_gpb/
http://people.eng.unimelb.edu.au/tcohn/tutorial.html
http://www.gaussianprocess.org/gpml/code
http://sheffieldml.github.io/GPy/


Gaussian Process classifier

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:
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, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
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models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs x
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(x

x

x) , P(y = 1|xxx) = �(f(x
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in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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+ Squared-exponential ARD covariance function: 
determines (quantify) the relevancy of each user 
feature, i.e. the relevance of feature i is 
inversely proportional to the length-scale 
hyper-parameter li 

+ 9-class classification using one vs. all 
+ GP hyper-parameter learning with Expectation  

Propagation 
+ Inference using FITC (500 inducing points)
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Occupation classification insights (I)

Feature Analysis - Cumulative Density Functions
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Occupation classification insights (II)

CDF of the topic “Arts”: Topic more prevalent in C5 (which 
includes artists) and the upper classes
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Occupation classification insights (II)

CDF of the topic “Arts”: Topic more prevalent in C5 (which 
includes artists) and the upper classes
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Occupation classification insights (III)

CDF of the topic “Elongated Words”: Topic more prevalent 
in the lower classes, and less so in the upper classes
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Occupation classification insights (III)

CDF of the topic “Elongated Words”: Topic more prevalent 
in the lower classes, and less so in the upper classes
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Occupation classification insights (IV)

Topic distribution distance (Jensen-Shannon divergence) 
for the different occupational classes (1-9)

that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Occupation classification insights (IV)

Topic distribution distance (Jensen-Shannon divergence) 
for the different occupational classes (1-9)

that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Occupation classification insights (IV)

Topic distribution distance (Jensen-Shannon divergence) 
for the different occupational classes (1-9)
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that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Additional ‘perceived’ user features

+ Previously used features: Profile features, Shallow 
profile features, and Topics  

+ Based on the work of Volkova et al. (2015), we also 
incorporated: 
> Inferred Psycho-Demographic features (15) 

e.g. gender, age, education level, religion, life 
satisfaction, excitement, anxiety etc. 

> Emotions (9) 
e.g. positive / negative sentiment, joy, anger, fear, 
disgust, sadness, surprise etc.



Defining the user income regression task

of National Statistics (ONS) for listing and grouping occupations. Jobs are organised hierar-
chically based on skill requirements and content.

The SOC taxonomy includes nine 1-digit groups coded with a digit from 1 to 9. Each 1-digit
group is divided into 2-digit groups, where the first digit indicates its 1-digit group. Each
2-digit group is further divided into 3-digit groups and finally, 3-digit groups are divided into
4-digit groups. The 4-digit groups contain specific jobs together with their respective titles.
Table 1 shows a part of the SOC taxonomy. In total, there are 9 1-digit groups, 25 2-digit
groups, 90 3-digit groups and 369 4-digit groups. Although other occupational taxonomies
exist, we use SOC because it has been updated recently (2010), is the outcome of years of
research [22], contains newly introduced jobs, has a balanced hierarchy and offers a wide vari-
ety of job titles that were crucial in our dataset creation. A recent study has proven the effective-
ness of building large corpora of users and their SOC occupation from social media finding
many similarities to real world population distribution across jobs [23].

We use the job titles provided by the extended description of each 4-digit SOC groups to
query the Twitter Search API and retrieve a maximum of 200 accounts which best matched
each job title. In order to clean our dataset of inevitable errors caused by keyword matching
(e.g. ‘coal miner’s daughter’ is retrieved using the ‘coal miner’ keywords) two of the authors
performed a manual filtering of all retrieved profile descriptions. We removed all profiles
where either of the annotators considered that the profiles were not indicative of the job title
(e.g. ‘spare time guitarist’), contained multiple possible jobs (e.g. ‘marketer, social media ana-
lyst’) or represented an institutional account (e.g. ‘limo driver company’). In total, around 50%

Table 1. Subset of the SOC classification hierarchy.

Group 112: Production Managers and Directors (50,952 GBP/year)

•Job titles: engineering manager, managing director, production manager, construction manager, quarry
manager, operations manager

Group 241: Conservation and Environment Professionals (53,679 GBP/year)

•Job titles: conservation officer, ecologist, energy conservation officer, heritage manager, marine
conservationist, energy manager, environmental consultant, environmental engineer, environmental
protection officer, environmental scientist, landfill engineer

Group 312: Draughtspersons and Related Architectural Technicians (29,167 GBP/year)

•Job titles: architectural assistant, architectural, technician, construction planner, planning enforcement
officer, cartographer, draughtsman, CAD operator

Group 411: Administrative Occupations: Government and Related Organisations (20,373 GBP/year)

•Job titles: administrative assistant, civil servant, government clerk, revenue officer, benefits assistant,
trade union official, research association secretary

Group 541: Textiles and Garments Trades (18,986 GBP/year)

•Job titles: knitter, weaver, carpet weaver, curtain maker, upholsterer, curtain fitter, cobbler, leather
worker, shoe machinist, shoe repairer, hosiery cutter, dressmaker, fabric cutter, tailor, tailoress, clothing
manufacturer, embroiderer, hand sewer, sail maker, upholstery cutter

Group 622: Hairdressers and Related Services (10,793 GBP/year)

•Job titles: barber, colourist, hair stylist, hairdresser, beautician, beauty therapist, nail technician, tattooist

Group 713: Sales Supervisors (18,383 GBP/year)

•Job titles: sales supervisor, section manager, shop supervisor, retail supervisor, retail team leader

Group 813: Assemblers and Routine Operatives (22,491 GBP/year)

•Job titles: assembler, line operator, solderer, quality assurance inspector, quality auditor, quality
controller, quality inspector, test engineer, weightbridge operator, type technician

Group 913: Elementary Process Plant Occupations (17,902 GBP/year)

•Job titles: factory cleaner, hygene operator, industrial cleaner, paint filler, packaging operator, material
handler, packer

doi:10.1371/journal.pone.0138717.t001
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User income regression: data
Income prediction
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We approach the task as regression.

+ 5,191 Twitter users 
mapped to their 
occupations, then 
mapped to an 
average income in 
GBP (£) using the 
SOC taxonomy 

+ ~11 million tweets 

+ Download the data

https://figshare.com/articles/Twitter_User_Income_Dataset/1515997


User income regression performance
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User income regression insights (I)

• Differences in real income between predicted perceived income groups are significant. We
highlight that other groups (e.g. high income or graduate studies) have few users assigned
and therefore it is hard to estimate a reliable group mean;

• Predicted perceived intelligence should be correlated with actual income. However, the vast
majority of people are predicted to be part of the average intelligence class. Annotating intel-
ligence from text is a hard task and our classifier was trained on labels which had a very low
Cohen’s κ = .07 [51]. However, predicting actual income using only perceived intelligence
probabilities still leads to correlations (.135).

In addition, we unveil the following relationships on Twitter:

• Users perceived as being Christian earn significantly less on average than people who chose
not to signal their religious belief. This is different to surveys in the US [52] which show that
income levels are very similar between Christians and non-affiliated. This finding is caused
by users who are perceived of being Christian from their posts earn significantly less than
users who do not disclose their religious beliefs;

Fig 2. Mean incomewith confidence intervals for psycho-demographic groups. All group mean differences are statistically significant (Mann-Whitney
test, p < .001).

doi:10.1371/journal.pone.0138717.g002
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User income regression insights (II)

• Neutral sentiment increases with income, while both positive and negative sentiment
decrease. This uncovers that lower income users express more subjectivity online;

• Anger and fear emotions are more present in users with higher income while sadness, sur-
prise and disgust emotions are more associated with lower income; the changes in joy are not
significant.

Similarly to our analysis between income and psycho-demographics, we test whether these
emotional changes are statistically significant using a Mann-Whitney test on the 1,000 user

Fig 3. Linear and non-linear (GP) fit for Profile features. Variation of income as a function of user profile features. Linear fit in red, non-linear Gaussian
Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g003

Fig 4. Linear and non-linear (GP) fit for emotions and sentiments. Variation of income as a function of user emotion and sentiment scores. Linear fit in
red, non-linear Gaussian Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g004
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User income regression insights (III)

e1: positive (l=46.27) e2: neutral (l=57.64) e3: negative(l=76.34)

e4: joy (l=36.37) e5: sadness (l=67.05) e6: disgust (l=116.66)

e7: anger (l=95.50) e8: surprise (l=83.61) e9: fear (l=31.74)
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User income regression insights (IV)

Topic 107 (Justice) Topic 124 (Corporate 1) Topic 139 (Politics)

Topic 163 (NGOs) Topic 196 (Web analytics/Surveys) Topic 99 (Swearing)
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Defining a user SES classification task

Profile description 
on Twitter Occupation SOC category1 NS-SEC2

1. Standard Occupational Classification job groups 
2. National Statistics Socio-Economic Classification: 

Map from the job groups in the SOC to a 
socioeconomic status (SES): upper, middle or lower



UK Twitter user data set for SES classification

+ 1,342 UK Twitter user profiles 
+ 2 million tweets 
+ Date interval: Feb. 1, 2014 to March 21, 2015 
+ Labelled with a socioeconomic status (SES), 

using the occupational class proxy from SOC and 
NS-SEC: upper, middle, or lower 

+ 1,291 user features following the previous 
paradigms, i.e. quantifying behaviour, impact, 
profile info, text in tweets and topics from tweets 

+ Download the data set

https://figshare.com/articles/Socioeconomic_status_classification_of_social_media_users/1619703


SES classification performance

Classification Accuracy (%) Precision (%) Recall (%) F1

2 classes 82.05 (2.4) 82.2 (2.4) 81.97 (2.6) .821 (.03)

3 classes 75.09 (3.3) 72.04 (4.4) 70.76 (5.7) .714 (.05)

… using a Gaussian Process classifier

T1 T2 T3 P

O1 606 84 53 81.6%

O2 49 186 45 66.4%

O3 55 48 216 67.7%

R 854% 58.5% 68.8% 75.1%

3-class classification

T1 T2 P

O1 584 115 83.5%

O2 126 517 80.4%

R 82.3% 81.8% 82.0%

middle & lower merged



Conclusions — Mining socio-political and 
socio-economic signals from social media

collective emotion

voting intention

occupational class

income

socio-economic status



Further thoughts

+ User-generated content is a valuable asset 

+ Nonlinear models tend to perform better given 
the multimodality of the feature space 

+ Deeper representations of text tend to improve 
performance 

+ Qualitative analysis is important 
> Evaluation 
> Interesting insights



Some of the future research challenges

+ Work closer with domain experts 

+ Better understanding of online media biases, 
e.g. demographics, external influence etc. 

+ Generalisation, defining limitations, more 
rigorous evaluation frameworks 

+ Methodological improvements 

+ Ethical concerns
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Thank you! 
Any questions?

Slides can be downloaded from 
lampos.net/talks

@lampos | lampos.net

http://www.lampos.net/talks
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