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Providing early indication 
of regional anomalies in COVID‑19 
case counts in England using search 
engine queries
Elad Yom‑Tov1,2*, Vasileios Lampos3, Thomas Inns6,7, Ingemar J. Cox3,4 & Michael Edelstein5

Prior work has shown the utility of using Internet searches to track the incidence of different 
respiratory illnesses. Similarly, people who suffer from COVID‑19 may query for their symptoms prior 
to accessing the medical system (or in lieu of it). To assist in the UK government’s response to the 
COVID‑19 pandemic we analyzed searches for relevant symptoms on the Bing web search engine from 
users in England to identify areas of the country where unexpected rises in relevant symptom searches 
occurred. These were reported weekly to the UK Health Security Agency to assist in their monitoring 
of the pandemic. Our analysis shows that searches for “fever” and “cough” were the most correlated 
with future case counts during the initial stages of the pandemic, with searches preceding case counts 
by up to 21 days. Unexpected rises in search patterns were predictive of anomalous rises in future case 
counts within a week, reaching an Area Under Curve of 0.82 during the initial phase of the pandemic, 
and later reducing due to changes in symptom presentation. Thus, analysis of regional searches for 
symptoms can provide an early indicator (of more than one week) of increases in COVID‑19 case 
counts.

COVID-19 was first reported in England in late January  20201. By the end of 2020, over 2.6 million cases and 
75 thousand deaths were reported.

In early March 2020, the UK’s Health Security Agency (UKHSA; formerly Public Health England), University 
College London (UCL) and Microsoft began investigating the possibility of using Bing web search data to detect 
areas where disease incidence might be increasing faster than expected, so as to assist UKHSA in the early detec-
tion of local clusters and better planning of their response. Here we report on the results of this work, which 
provides UKHSA with weekly reporting on indications of regional anomalies of COVID-19.

Internet data in general and search data in particular, have long been used to track Influenza-Like Illness 
(ILI)2–4,  norovirus5, respiratory syncytial virus (RSV)6, and dengue  fever7 in the community. The added value 
of these data relies on the fact that most people with, for example, ILI will not seek healthcare but will search 
about the condition or mention it in social media  postings8. Such behaviour could be compounded by fear of 
attending medical facilities in the midst of a pandemic. This enables the detection of health events in the com-
munity before they are reported by formal public health surveillance systems and sometimes even when those 
events are not visible to the health system. Early evidence suggests that people with COVID-19 search the web 
for relevant symptoms, making such searches predictive of COVID-199.

Building on these studies we aimed to identify local areas in England (specifically, Upper Tier Local Areas, 
UTLAs) with higher than expected rises in searches for COVID-19 related terms, in order to provide local public 
health services with early intelligence to support local action. We focused on the regional level because much of 
the response to the pandemic was coordinated at this level, and also because detecting local clusters while they 
may still be undetected by national level surveillance and before they have spread further is an efficient approach 
to outbreak management.
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Results
Our results below show that symptom searches were correlated with case counts, and that our approach allowed 
the prediction of regional anomalies approximately 7–10 days before they were identified using case counts 
during the first stages of the pandemic.

Prediction quality for case number using geographically proximate UTLAs. The correlation 
between case counts of pairs of geographically proximate UTLAs which were at least 50km apart was, on aver-
age, 0.84. This is compared to 0.63 for randomly selected UTLA pairs (sign test, P < 10−9 ). Thus, as described 
in the “Methods” section, here we define anomalies as rises in one UTLA which are not observed in a nearby 
UTLA. As proximate UTLAs have correlated case counts, such mismatches are indicative of an anomaly at the 
UTLA level.

Correlation of individual keywords with case counts. For illustrative purposes, Fig. 1 shows the daily 
number of COVID-19 cases and percentage of Bing users who queried for “cough” and “fever” in one of the 
UTLAs during the first wave of the pandemic. We calculated the cross-correlation between the daily time series 
of query frequencies for each keyword and the daily case count for each UTLA. The highest correlation and its 
lag in days were noted, and the median values (across UTLAs) are shown for each keyword in Table 1.

As the Table shows, the correlations and lag vary across the four periods ((1) March 1st to May 31st. 2020, 
(2) June 1st to August 31st, 2020, (3) September 1st, 2020 to April 30th, 2021, and (4) May 1st, 2021 to Decem-
ber 13th, 2021). During the first period, the best correlations at lags of up to 21 days were reached for ”cough”, 
”sore throat”, and ”fever”. Based on initial results and using UKHSA case definition of COVID-19 at the time, we 
focused on two keywords, ”cough” and ”fever”, for the remaining analysis. We note, however, that more accurate 
results could have been achieved by tuning the model over time to account for the change in the most predictive 
symptoms.

Detection ability of the outlier measure. We provided predictions for UTLAs where at least 10000 
users queried on Bing in a one week interval. On average this corresponded to predictions for 106 UTLAs (of 
173 UTLAs) per week.

Figure 2 shows the performance of the method over time by presenting the Area Under Curve (AUC, see 
Appendix for a sample ROC curve) where the dependent variable is the UTLA outlier measure calculated at dif-
ferent lags from the dependent variable. The latter is whether an actual outlier of cases was detected at a UTLA 
(see “Methods” section for details). As the Figure shows, performance changed over the duration of analysis. 
During the first wave of the pandemic, “fever” reached the highest AUC preceding case numbers by 5-8 days. 

Figure 1.  Number of COVID-19 cases (brown) and percentage of Bing users who queried for “cough” in a 
sample UTLA (gray circles) and for “fever” (black deltoids). Curves are smoothed using a moving average filter 
of length 7.
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During the second period of the pandemic the composite signal, calculated as the product of the UTLA outlier 
measure values for ”fever” and ”cough” (denoted in the figure as “Both”), reached the highest AUC at a slightly 
longer lead time (8-15 days), while during the third and fourth periods lags were longer still, but performance 
was overall lower than for the first two periods.

Changes in detections over time. Figure  3 shows the number of UTLAs with sufficient data, mean-
ing that enough users queried for the relevant terms, over the weeks of the analysis. As the figure shows, the 
number of users asking about “fever” and about “cough” were relatively high initially, but later had a significant 
drop (corresponding to the drop in cases), followed by a rise during the second wave of the pandemic. Figure 3 
(center) shows the number of UTLAs per week that had rises above the threshold. Here too both “cough” and 
“fever” roughly follow the phases of the pandemic, meaning that more outbreaks were predicted during the first 
and third phases of the pandemic. Finally, the bottom figure shows the number of UTLAs which experienced an 
anomaly, as defined in the Methods, week over week. This figure demonstrates that the number of UTLAs which 
showed an anomaly was usually around 3 per week, with higher values observed in the 3rd and 4th periods of 
the pandemic.

Demographic attributes of outlying areas. The 10 UTLAs that were false positives with the largest 
positive outlier measure and the 10 UTLAs that were false negatives with the largest negative outlier measure for 
“fever” at lags of 5 to 10 days at each week were identified to assess if they could by associated with specific demo-
graphic characteristics of their areas. Here, the highest correct detections were those where the largest predicted 
rise according to Bing data corresponded to a similar unexpected rise in case numbers and, similarly, incorrect 
detections were those where large predicted rises did not correspond to unexpected rises in case numbers.

Association between demographic characteristics of UTLAs and the the likelihood of incorrect detections 
was estimated using a logistic regression model. However, none of the variables were statistically significantly 
associated with these attributes ( P > 0.05 with Bonferroni correction) during the entire data period.

Table 1.  Correlation (median across UTLAs) (corr) and lag (median across UTLAs)(in days) at which it is 
achieved, between case numbers and fraction of users who queried for these keywords on Bing. A positive 
lag means that Bing searches appear before case counts, and vice versa. The three most strongly correlated 
keywords in each time period are highlighted. Synonyms are grouped into their respective main symptom.

Keyword All periods Period 1 Period 2 Period 3 Period 4

Dates

1 Mar 2020–13 
Dec 2021

1 Mar 
2020–31 May 
2020

1 Jun 
2020–31 Aug 
2020

1 Sep 
2020–30 Apr 
2021

1 May 
2021–13 Dec 
2021

Corr Lag Corr Lag Corr Lag Corr Lag Corr Lag

Altered consciousness 0.034 0 0.125 0 0.137 0 0.066 0 0.060 0

Anorexia 0.066 19 0.173 9 0.191 10 0.095 8 0.086 10

Anosmia 0.040 11 0.278 8 0.191 11 0.128 5 0.108 6

Breathing difficulty 0.041 22 0.199 17 0.174 14 0.064 5 0.064 10

Chest pain 0.086 24 0.190 14 0.184 11 0.076 4 0.070 11

Chills 0.038 17 0.192 12 0.201 11 0.049 4 0.031 10

Cough 0.092 25 0.383 21 0.189 7 0.113 5 0.152 4

Diarrhea 0.138 26 0.172 14 0.191 13 0.049 5 0.083 11

Dry cough 0.011 17 0.272 18 0.186 8 0.090 8 0.114 8

Fatigue 0.091 23 0.154 2 0.174 12 0.015 2 0.074 15

Fever 0.048 28 0.289 17 0.160 8 0.052 10 0.076 24

Head ache 0.122 27 0.174 15 0.176 14 0.004 2 0.052 13

Joint ache 0.042 10 0.175 4 0.182 9 0.056 5 0.083 9

Muscle ache 0.059 18 0.174 9 0.207 8 0.031 4 0.074 9

Nasal congestion 0.092 22 0.191 13 0.195 10 0.073 10 0.091 9

Nausea 0.128 24 0.154 10 0.183 10 0.060 5 0.077 13

Nose bleed 0.061 20 0.153 13 0.186 10 0.052 6 0.065 7

Pneumonia − 0.009 23 0.319 23 0.175 18 0.086 2 0.126 9

Rash 0.189 23 0.146 3 0.151 10 0.018 4 0.187 0

Runny nose 0.061 23 0.263 21 0.212 9 0.067 10 0.115 8

Seizure 0.103 26 0.12 12 0.20 10 0.017 7 0.057 16

Sneezing 0.016 25 0.155 18 0.161 7 0.076 5 0.088 9

Sore throat 0.055 26 0.314 20 0.197 9 0.084 12 0.134 7

Tiredness 0.066 24 0.140 18 0.177 11 0.019 5 0.057 15

Vomiting 0.111 25 0.149 12 0.201 9 0.051 4 0.089 7
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Figure 2.  Area Under Curve (AUC) of the UTLA outlier measure for detecting unusually large rises in 
COVID-19 cases per UTLA, as a function of the lag between case counts and Bing data. The four figures refer to 
the four time periods: First wave (top) to fourth wave (bottom). Dates of the 4 periods are: (1) March 1st to May 
31st. 2020, (2) June 1st to August 31st, 2020, (3) September 1st, 2020 to April 30th, 2021, and (4) May 1st, 2021 
to December 13th, 2021. Curves are computed for all weeks and all UTLAs at each time period.
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Discussion
Internet data, especially search engine queries, have been used for tracking influenza-like illness and other ill-
nesses for over a decade, because of the frequency at which people query for the symptoms of these illnesses 
and the fact that more people search for symptoms than visit a health  provider2,3. COVID-19, which was a novel 
disease in early 2020, seemed to present similar opportunities for tracking using web data, and current indica-
tions suggest that search data could be used to track the  disease9. However, COVID-19 also differs from diseases 

Figure 3.  Number of UTLAs with sufficient Bing data over time (top), number of UTLAs with values over the 
threshold over time (middle) and number of UTLAs with an anomaly (as defined in the “Methods” section) 
(bottom). Week numbers correspond to the weeks since the beginning of 2020. The periods marked are: (1) 
March 1st to May 31st. 2020, (2) June 1st to August 31st, 2020, (3) September 1st, 2020 to April 30th, 2021, and 
(4) May 1st, 2021 to December 13th, 2021.
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normally tracked using query frequencies, most commonly influenza. In particular, COVID-19 has disrupted 
daily life in ways that influenza does not and people with COVID-19 could need or be required to seek medical 
attention, thus making them more visible to the traditional healthcare system, e.g., general practitioners, medical 
clinics, and hospitals. Additionally, influenza has well documented seasonal activity, while COVID-19 activity has 
been prolonged. It was therefore unknown whether these different characteristics would affect online behaviour 
and as a consequence whether the methodological approaches used for other diseases would be appropriate 
for COVID-19. Furthermore, almost all previous work on disease surveillance using search data is based on 
supervised machine learning frameworks that rely on training data. However, there is little or no training data 
available for COVID-19. We therefore developed a method for detecting local outbreaks, based on past  work11,12, 
that required minimal training data.

Our results demonstrate the highest correlation between case numbers and the use of the keywords “cough”, 
“fever” and “sore throat” at lead times up to 21 days, during the first period of the pandemic. Queries lead case 
numbers by 17-21 days (similar to the findings  of9). Based on early indications of the apparent symptoms of 
COVID-19 from UKHSA we focused on using the first two keywords in our detection methodology.

The keywords most correlated with anomalies and with case counts changed over time, as has been observed 
for other conditions (e.g.,  influenza13). This suggests that the model would need to be adjusted over time to focus 
on the most relevant keywords.

The detected anomalies provided UKHSA with a lead time of approximately one week with respect to case 
numbers, initially with an AUC of approximately 0.82. This AUC later decreased to around 0.70 during the sec-
ond phase of the pandemic, and to non-significant levels thereafter. This modest accuracy is nonetheless useful 
as long as exceedance of the 2 standard deviations threshold is not interpreted at face value as an increase in 
disease incidence, but as an early warning signal that triggers further investigation and supports outputs from 
other disease surveillance systems.

The results of this analytical method were integrated into routine UKHSA COVID-19 surveillance outputs 
together with a variety of other data sources. This type of information added value to the public health response 
as it was provided in a timely way, was flexible to potential changes in case definition and was complementary to 
other sources of syndromic surveillance at the early stages of infection before people seek healthcare. However, 
there were issues of completeness and representativeness of these data, alongside challenges of explaining model 
results to public health stakeholders.

The correlations between symptom search rates and case counts, even for the best performing keywords, 
were lower than correlations observed for other conditions (e.g.,  norovirus5 or  RSV6). We hypothesize that this 
is due to several factors, including (i) data availability, (ii) changes in how people’s experience of the pandemic 
is manifested by searches online and public interest in the pandemic, which may have heightened awareness of 
the disease causing more people to query about it even if they did not experience symptoms, (iii) noisy ground 
truth data (i.e., case count data), which was strongly affected by testing policies and test availability, and (iv) 
attributes of the COVID-19 pandemic, which presents a more diverse set of symptoms, compared to, for example, 
influenza-like illness. We discuss each of these factors below:

Search data is  noisy14 and Bing’s market share in England is estimated at around 5%15. The latter could be 
mitigated by using data from the dominant search engine (Google), though at the time of writing these data are 
not available for use by researchers or public health practitioners. Future work will test the hypothesis that data 
from a larger market share could have improved prediction accuracy.

User behavior may change over time (see, for example, Fig. 3). This can happen either as knowledge about 
COVID-19 improved or as a result of “COVID fatigue”, e.g., declining interest among people in addressing the 
pandemic. Moreover, different strains of the virus may cause different symptom profiles and anxiety among 
people, leading to different search behaviors. Mapping and understanding these changes is an important research 
question, which would enable adjustment of the model to improve its accuracy and public health utility.

A third factor affecting the reported performance is ground truth. We compared our results to the change 
in the number of positive COVID-19 cases. These numbers are affected by case definition and by testing policy, 
which may have caused a non-uniform difference between known and actual case numbers in different UTLAs. 
Additionally, COVID-19 has a relatively high asymptomatic rate (estimated at 40–45%16). People who do not 
experience symptoms would be less likely to be searching for these symptoms online and perhaps also missed in 
case number counts, though the extent of the latter is dependent on testing policy. On the other hand, serologi-
cal  surveys17 suggest that at the end of May 2020, between 5% and 17% of the population (depending on area in 
England) had been exposed to COVID-19, compared to only 0.3% that have tested positive to a screening test, 
suggesting that a large number of people who may have experienced symptoms of COVID-19 and queried for 
them were not later tested, leading to errors in our comparison between detections and known case numbers. 
We note that Virus Watch, a syndromic surveillance  study18, and models based on Google search  data19 also 
reported significant differences between their respective indicators and reported case numbers. Additionally, 
we report a specific outlier measure, which would not be sensitive, for example, if rises were to occur in a large 
number of UTLAs.

Finally, the COVID-19 pandemic is unique in its duration and for the rapid emergence of strains with slightly 
different clinical  presentations20. This poses a unique challenge for detection based on internet data because it 
means that case identification changes, sometimes rapidly, meaning that models need to be adjusted over time. 
This is in contrast to diseases such as influenza, where symptoms are well established and are mostly stable over 
time. This presents a new and emerging challenge for scientists working in this area and reinforces the need for 
close collaboration between computer scientists, data scientists and epidemiologists, to ensure that case defini-
tions are in line with the current epidemiology of the disease.

Despite these challenges to the accuracy of this model, the results were successfully integrated into routine 
UKHSA surveillance outputs and used for the surveillance of COVID-19. Future work should formally evaluate 
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these outputs in the context of a public health surveillance system, to understand ways that the model results 
could be more effectively applied.

Methods
Models of ILI which are based on internet data are usually trained using past season’s data. Since this was 
infeasible for COVID-19 we chose a different approach in our prediction, which utilized less training data. Our 
methodology examined two consecutive weeks, where during the first of those weeks we found, for each Upper 
Tier Local Authority (UTLA, a subnational administrative division of England into 173  areas21), other UTLAs 
with similar rates of queries for symptoms. These UTLAs were then utilized to predict the corresponding rates of 
queries for symptoms during the following week. A significant difference between the actual and predicted rate 
of searches served as an indication of an unusual number of searches in a given area, i.e., an anomaly.

This methodology is similar to prior  work11, albeit one where differences are calculated between actual and 
predicted symptom rates. As such, it shares similarities with the methodology used to predict the effectiveness 
of childhood flu vaccinations using internet  data12,22.

Symptom list and area list. The list of 25 relevant symptoms for COVID-19 was extracted from UKHSA 
 reports10, and are listed in Table 2 together with their synonyms, taken from Yom-Tov and  Gabrilovich23.

In order to maximise the utility of the analysis, we conducted it at the level of the UTLA, over which local 
government has a public health remit.

Search data. We extracted all queries submitted to the Bing search engine from users in England. Each 
query was mapped to a UTLA according to the postcode (derived from the IP address of the user) from which 
the user was querying. We counted the number of unique users per week who queried for each of the keywords 
within each UTLA, and normalized by the number of unique users who queried for any topic during that week 
within each UTLA. We counted users and not searches since a single user could generate multiple searches and 
counting users should correlate better with case counts. The fraction of users who queried for keyword k or its 
synonyms at week w in UTLA i is denoted by Fiwk . Note that the fraction of users who queried for keyword k is 
the fraction of people who queried for keyword k and its synonyms listed in Table 2.

Data was extracted for the period between March 1st, 2020 to December 13th, 2021. The data period was 
divided into 4 segments, corresponding to the first wave of the pandemic (March 1st to May 31st. 2020), a mid-
dle period (June 1st to August 31st, 2020), the second wave of the pandemic (September 1st, 2020 to April 30th, 
2021) and its third wave (May 1st, 2021 to December 13th, 2021).

Table 2.  25 symptoms related to COVID-19 (as identified by  UKHSA10) and their synonyms or related 
expressions.

COVID-19 symptoms Synonyms or related expressions

Altered consciousness Altered consciousness

Anorexia Appetite loss, loss of appetite, lost appetite

Anosmia Loss of smell, can’t smell

Arthralgia Joint ache, joint aching, joints ache, joints aching

Chest pain Chest pain

Chills Chills

Cough Cough

Diarrhea Diarrhea, diarrhoea

Dry cough Dry cough

Dyspnea Breathing difficult, short breath, shortness of breath

Epistaxis Nose bleed, nose bleeding

Fatigue Fatigue

Head ache Head ache, headache

Myalgia Muscle ache, muscular pain

Nasal congestion Blocked nose, nasal congestion

Nausea Nausea, nauseous

Pyrexia Fever, high temperature

Pneumonia Pneumonia, respiratory infection, respiratory symptoms

Rash Rash

Rhinorrhea Runny nose

Seizure Seizure

Sore throat Sore throat, throat pain

Sternutation Sneeze, sneezing

Tiredness Tiredness

Vomiting Vomit, vomiting



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2373  | https://doi.org/10.1038/s41598-022-06340-2

www.nature.com/scientificreports/

For privacy reasons, UTLAs with fewer than 10,000 Bing users were removed from the analysis. Additionally, 
any keyword k which was queried by fewer than 10 users in a given week at a specific UTLA, i, was effectively 
removed from the analysis of that UTLA by setting Fiwk to zero (see also Fig. 3).

Validation data. We compared our detection methodology (described below) to unusual changes in the 
number of reported COVID-19 cases per UTLA. COVID-19 case counts were accessed from the UK govern-
ment’s coronavirus  dashboard24. We used case counts as a proxy for disease incidence though this is known to 
be a noisy proxy (see Discussion).

Unusual changes in the number of cases were computed as follows: For each UTLA i we found the closest 
UTLA which was at least 50km distant, denoted by ic . Let Nj

i  be the number of cases in UTLA i at week j, then 
the expected number of cases in UTLA i at week j + 1 is N̂ j+1

i =
(

N
j+1

ic
/N

j
ic

)

· N
j
i  . We refer to the difference, 

δ
j+1

i =
(

N
j+1

i − N̂
j+1

i

)

 , as the case count innovation (similar to Kalman filtering), i.e., the difference between 
the predicted and measured values. The standard deviation of δj+1

i  across all UTLAs at week j + 1 is computed, 
and abnormal rises in case numbers are defined by rises greater than or equal to two standard deviations.

Analysis. Analysis was conducted at a weekly resolution, beginning on Mondays of each week, starting on 
March 4th, 2020. At each week w we found for each UTLA i and keyword k a set of N control UTLAs such that 
Fwik could be predicted from {Fwjk}

N
j=1 . To do so, a greedy procedure was followed for each UTLA i: 

(1) Find a UTLA which is at least 50km distant from the i-th UTLA for which the linear function Fw
i ≈ ω1F

w
j  

where Fw
i  is a vector of keywords k, k = 1, 2, . . . , 25 . We seek a mapping of the symptom rates at j to the 

symptom rates at i which reaches the the highest coefficient of determination ( R2 ). Fw
i ≈ ω1F

w
j + C in the 

least-squares regression sense. ω1 is the coefficient of the linear function and C is an intercept term.
(2) Repeat (1), adding at each time another area that maximally increases R2 when added to the previously 

established set of areas. That is, at iteration iter, find the UTLA which, if added to the previously found 
UTLAs, minimizes the MSE of the function: Fw

i ≈ ω1F
w
j1
+ · · · + ωiterF

w
jiter

+ C . Note that the values of ω 
and C are recomputed at each iteration.

The linear function f was optimized for a least squares fit, with an intercept term.
The result of this procedure is a linear function which predicts the symptom rate for each UTLA given the 

symptom rates at N other UTLAs at week w. We denote this prediction as F̂
w

i = f (Fw
jk).

We used N = 5 after observing the changes in R2 as a function of the number of UTLAs (see Supplementary 
Materials Figures A1).

The function is applied at week (w + 1) to each UTLA, and the difference between the estimated and actual 
symptom rate for each symptom is calculated: dik = Fw+1

ik − F̂w+1
ik  . We refer to this difference as the UTLA 

outlier measure for symptom k.
To facilitate comparison between the differences across keywords, dik , the values of dik are normalized to zero 

mean and unit variance (standardized) for each keyword across all UTLAs.
The threshold at which a UTLA should be alerted can be set in a number of ways. In our work with UKHSA, 

we reported UTLAs where the value of the UTLA outlier measure, dik , exceeded the 95-th percentile threshold of 
values, computed for all UTLAs with sufficient data and all 23 symptoms excluding ”cough” and ”fever”, similar 
to the procedure used in the False Detection Ratio  test25.

Demographic comparisons. Demographic characteristics of UTLAs were collected from the UK Office 
of National Statistics (ONS), and include population  density26, male and female life expectancy and healthy life 
 expectancy27, male to female ratio, and the percentage of the population under the age of  1528.

Association between demographic characteristics of UTLAs and the likelihood that they would be incorrectly 
identified as having abnormally high UTLA outlier measure values was estimated using a logistic regression 
model.

Ethics approval. This study was approved by the Institutional Review Board of Microsoft.

Data availability
Bing data similar to the ones reported here are available online at https:// github. com/ micro soft/ 
Bing- COVID- 19- Data.

Received: 5 October 2021; Accepted: 28 January 2022
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