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An artificial intelligence approach for selecting effective
teacher communication strategies in autism education
Vasileios Lampos 1,3✉, Joseph Mintz2,3✉ and Xiao Qu2

Effective inclusive education is key in promoting the long-term outcomes of children with autism spectrum conditions (ASC).
However, no concrete consensus exists to guide teacher-student interactions in the classroom. In this work, we explore the
potential of artificial intelligence as an approach in autism education to assist teachers in effective practice in developing social and
educational outcomes for children with ASC. We form a protocol to systematically capture such interactions, and conduct a
statistical analysis to uncover basic patterns in the collected observations, including the longer-term effect of specific teacher
communication strategies on student response. In addition, we deploy machine learning techniques to predict student response
given the form of communication used by teachers under specific classroom conditions and in relation to specified student
attributes. Our analysis, drawn on a sample of 5460 coded interactions between teachers and seven students, sheds light on the
varying effectiveness of different communication strategies and demonstrates the potential of this approach in making a
contribution to autism education.
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INTRODUCTION
Autism education has been a growing area of interest in recent
years, as the observed prevalence of autism spectrum condition
(ASC) among children has risen from an estimated 1 in 10000 in
the 1960s1 to at least 1 in 100 today2,3. ASC is an umbrella term
that describes neurodevelopmental conditions which are typically
expressed in terms of impaired social interaction and commu-
nication abilities, and stereotypical or obsessive patterns of
behaviour. Such impairments often have a significant impact on
the individual’s social, educational, and employment experiences
within the current societal norms4. As such, the long-term
outcomes of young people with ASC are often poor, and are
associated with significant difficulties in undertaking complex and
longer-lasting social transactions, acting independently in the
labour market, or fulfilling job requirements5.
The potential of artificial intelligence (AI) to drive developments

in education is well-recognised6,7. Currently, most research efforts
are based on data stored in learning management systems, as this
type of analysis is more straightforward8. In this paper, we report
on an innovative experiment that uses machine learning, a data-
driven approach to AI, to model teacher-student interactions in
the classroom. Our particular focus is on children with ASC. The
application of communication strategies tailored to the specific
needs of children with ASC can lead to improved outcomes for
this group9–11, including effective participation in educational
opportunities, improved social functioning, and longer-term
achievement in employment and relationships5,12,13. We propose
that machine learning may be one way to further the develop-
ment of such ASC-specific strategies. To evaluate our hypothesis,
we devised a protocol for recording real-time in-classroom data
capturing interactions between teachers and primary school
students with ASC, including contextual information. In total, we
coded 5460 interactions between teachers and a cohort of seven
students with fairly heterogeneous characteristics. We then
developed a classifier for predicting the student’s response to

particular communication strategies by the teachers, and used this
to ultimately suggest the most appropriate ones.
Our review of the literature indicates that most work to date

involving machine learning and autism has focused on the
development of screening tools for diagnosis, developing
classifiers that could perform an earlier and more accurate ASC
diagnosis and evaluation14–16. No research so far has investigated
the application of machine learning to real-time data capturing
teacher communication strategies and student response, and
hence this "in vivo” modelling approach for education and autism
remains largely unexplored. Hence, our study provides some
evidence to support the argument that AI methods could be used
to tailor pedagogical strategies to better meet the needs of the
students with ASC.
We focused on teacher communication strategies because

communication is a key impairment in ASC17,18. Research in
autism education has highlighted their importance in learning
and developing social communication skills19–21. We considered
different types of teacher communication strategies and in
particular verbal communications, the use of gestures, physical
prompts, visual representations (pictures) or physical objects, and
the extent to which children with ASC responded to different
strategies. These strategies are typically employed as part of
the social communication, emotional regulation and transactional
support (SCERTS) framework, a widely used comprehensive
whole-school approach to communication development in
autism education22,23.
In typical teacher-student interactions in the classroom most

communication is verbal24. However, traditional verbal commu-
nication alone often does not work effectively with children with
ASC25,26. There is a particular emphasis in the literature on the use
of visual strategies for effective communication with children and
young people with ASC27,28. For example, some studies have
shown that interventions using pictures and symbols such as the
Picture Exchange Communication System can improve
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communication in non-verbal children with ASC29–32. Multiple
studies on the use of visual activity schedules over a period of
20 years (1993–2013) corroborate these findings33. The use of
objects in developing communication skills in children with ASC
has also been noted30,34,35. Objects may provide a mode of
communication that is more concrete and thus may be more
readily understood by some children than the use of pictures36–38.
There is also some evidence that gesture or sign prompts can be
effective communication strategies for children with ASC. Most of
non-verbal children with ASC would use gestures in the classroom
when communicating with teachers39. Furthermore, verbal
instructions combined with simple gestures and/or signs are
reportedly slightly more effective and efficient than verbal
instructions alone25.
Physical prompts, such as the teacher guiding the hand of a

child with their hand, are a feature of the literature in a number of
studies promoting learning and communication among children
with ASC40,41. In such studies, physical prompting is usually
associated with earlier more intensive assistance, and thus there is
an implicit association of physical prompting with lower levels of
independence. Although there are, as far as we can ascertain, no
studies which have surveyed the extent to which teachers use
physical prompting in autism, nor of their perceptions of its utility,
Prizant et al. when discussing the SCERTS model, do note their
concerns about the possible negative impacts of teachers using
excessive physical prompting23. Very few studies have though
looked at the use of physical prompting in typical lesson situations
where there is free-flow interaction between students and
teachers. Chiang, in one of the few instances of such a study,
found that physical prompts showed no association with
expressive communication from children with ASC, concluding
that they may not be a useful instruction42. There has been little
attention, however, in subsequent studies on empirical evaluation
of the role of physical prompts in general teacher-student
interactions in autism education.
In this study, we focus on student responsiveness to instruction,

i.e., the extent to which a student responds to a teacher’s
instruction or other pedagogical techniques, such as modelling
how to draw a picture on the whiteboard. This is just one element
of communication between teachers and students in the class-
room and it may not encompass broader expressive and receptive
communication43. However, a number of studies have identified
responsiveness as a particularly important variable which med-
iates between classroom instruction and academic outcomes44–46.
We include a range of attribute data about students, such as sex
and age47, as well as measures of cognitive and communication
development (P-level, SCERTS). P-level is determined by the

teachers and is used to assess the language and mathematical
ability of children with special educational needs in England48. A
detailed analysis of P-levels indicates that they are stable in item
response theory results across the years49. The SCERTS assessment
classifies language competence using three stages to represent
communication development: (a) social partner—children who
engage in non-verbal communication and may communicate
intentionally through gestures and vocalisations, (b) language
partner—children who communicate with intent using words or
word combinations, signs and/or symbols to express meanings,
and (c) conversational partner—children who use words, phrases
and sentences, and engage in conversations demonstrating an
understanding of non-verbal cues of turn taking and topic
change23. Although SCERTS is based on contemporary practices
in autism education, it involves considerable whole-school
training at the point of implementation and is supported by
high-quality manuals which assist teachers in making judgements
on communication stage50. As such it has a high degree of
ecological validity.
There is also some focus in the literature on how emotion

affects student responsiveness4. Students with ASC have problems
with emotional regulation and may have difficulty controlling their
emotional states. This can impact their level of classroom
engagement and the extent to which they can successfully
respond to classroom instruction44,51. Therefore, the student’s
observed emotional state is one of the contextual variables
considered in the study.
As noted, there is little empirical evidence on how effective

different teacher communication strategies are in terms of student
responsiveness in autism education. Understanding the extent to
which there exist differential levels of responsiveness to various
communication strategies may then be helpful in aiding teachers
in making decisions about strategy selection which could lead to
improved educational outcomes for children with ASC. Our
approach not only attempts to provide some insights based on
structured observations of teacher-student interactions, but also
aims to generalise such findings by developing machine learning
solutions that can leverage this information.

RESULTS
Task description
Data was collected by observing interactions between teachers
and seven students with ASC. To describe an interaction as well as
its context, we focused on a specific set of discrete features
(categories) and recorded their subtype as listed in Table 1.

Table 1. Categories of information that was collected (and subsequently used to build a classifier) by observing interactions between teachers and
students with ASC.

Category Subtypes

Student attributes Sex, age, P-level, SCERTS

Teaching objective Academic (main teaching objective entailed by the observed lesson), social (e.g. asking a child to put their shoes on),
pedagogic (social interaction in pursuit of an academic objective)

Teaching type Giving instructions, modelling, redirection, questioning, encouragement/praise, initiating conversation

Context for teaching type Whole class, small group, individual attention, individual work withdrawal, transition (e.g. moving to different
locations or activities)

Student’s observed emotional state Positive (visibly happy), negative (visibly sad), neutral (calm with a neutral expression)

Teacher’s communication strategy Verbal (use of words), gesture (e.g. pointing with a finger), physical prompt (e.g. guiding the arm of a student),
picture (e.g. using a picture or pointing to a visual chart), object (e.g. showing a physical book to encourage the
student to get the book)

Student response (outcome) Full response (e.g. when asked to write a sentence in their workbook, the student starts writing), partial response
(the student starts writing, but then quickly stops), no response (the student does not engage in writing at all)

Subtypes (comma-separated) with an explanation in italics (if required) represent the choices or attributes considered for each category.
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Categories include student attributes (see Supplementary Table
3), the teaching objective (e.g. academic), the student’s observed
emotional state (e.g. negative), the teacher’s communication
strategy (e.g. using a picture) or pair of strategies (e.g. verbal
and picture), and the student’s response (full, partial or no
response). We then used this data to train and evaluate binary
classifiers aiming to predict the type of student response based
on the rest of the observations. In the binary classification
formulation, the two target classes we explored were "full student
response” and "either partial or no student response”. Three
classifiers were deployed with increasing complexity and
expected accuracy capacity: logistic regression with elastic net
regularisation (LR), random forest (RF), and a composite Gaussian
Process (GP). A detailed description of all the above is provided in
the “Methods” section.

Classification accuracy and interpretation
Table 2 enumerates the classification accuracy estimates (10-fold
cross-validation) for predicting student response based on the
observed data, with (top) and without (bottom) using student
attributes (age, sex, P-level, SCERTS), denoted by adding "-α” to the
end of method abbreviations. The RF classification method
delivers the best performance both in terms of raw accuracy
and F1 score, although there is no statistically significant
difference between the RF and the GP outcomes when student
attributes are used. In particular, a t-test shows that the null
hypothesis that RF-α is not different from GP-α in terms of
accuracy and F1 score cannot be rejected at p= 0.05 (with p=
0.847 and p= 0.950, respectively). Overall, we see that the
classification performance increases for all methods, when student
attributes are incorporated. For the RF method, in particular,
accuracy and F1 score increase by 4.37% and 1.64%, respectively.
All outcomes outperform the major class baseline, obtained by
classifying everything as "full response”, as the latter delivers an
accuracy of 0.566 (SD= 0.023).
Table 3 expands on Table 2’s results showing performance

estimates when τ previous observations and student responses
are incorporated. We performed this autoregressive problem
formulation for τ= {1,…, 5}, and here we present results for the
optimal τ setting per method (detailed results for all τ’s are
provided in Supplementary Table 1). All methods are improving
compared to their non-autoregressive formulations. We observe a
significant performance gain for the GP and GP-α methods
which outperform the rest, with the exception of the F1 score of
the GP (τ= 1) that does not have a statistically significant
difference from the one obtained using the RF (τ= 3), with

p= 0.247. In most occasions, using just a single previous
observation provides the most accurate estimates. Notably, the
combination of student attributes and autoregression in a GP
obtains the best performance in all our experimental setups,
yielding an accuracy of 0.711 (SD= 0.015) and an F1 score of
0.757 (SD= 0.014). Deploying this best performing model in a
leave-one-student-out validation setup (7-fold cross-validation)
yields inferior performance as expected given the increased
difficulty of the task. However, it still significantly outperforms the
major class baseline; more details are provided in the Supple-
mentary Information (SI).
We subsequently perform an ablation analysis of the most

accurate classifier (GP-α, τ= 1) to understand how different
feature categories contribute in predicting student response.
Its outcomes are enumerated in Table 4. First, we used each
category as the only feature for the classifier. Then, we removed
one category at a time, computing the classification performance
using the remaining ones. In this latter case, the greater the
accuracy reduction the more important the feature category is
considered to be. In the ablation experiments, we used the same
folds as in the original ones, but a simpler formulation of the GP
kernel, where a single covariance function is applied to all input
data (Eq. (1)). This provides a more straightforward comparison of
the impact across different feature categories as it treats the
feature space uniformly without segmenting it into subcategories
handled by different covariance functions. To this end, we also re-
estimated the classification accuracy when a single kernel is
applied to all feature categories and used it as an upper-
performance benchmark for the ablation analysis (bottom row of
Table 4). Past information (observation and student response) is
the strongest feature when used in isolation. However, this is most
likely due to the fact that it covers the entire feature space, albeit
for previous teacher-student interaction instances. Teaching type
(s) and the observed emotional state of the student are also good
predictors when used alone, in contrast to the teaching objective
which yields the worst classification accuracy. When we reverse
this experiment, excluding one specific feature category at a time,
we can see that omitting the communication strategy of the
teacher yields the greatest negative impact to the classifier’s
accuracy. The rest of the categories do have a similar impact, with
the exception of the teaching objective that by far has the
smallest effect. Through a comparison with the suggested

Table 2. Classification accuracy estimates with their standard
deviation (in parentheses) for predicting student response (full
response versus otherwise) obtained via a 10-fold cross-validation for
the following methods: logistic regression with elastic net
regularisation (LR), random forest (RF), Gaussian process (GP), and the
same models under an expanded feature set considering student
attributes (⋆-α).

Method Accuracy Precision Recall F1 score

LR 0.647 (0.017) 0.803 (0.013) 0.653 (0.029) 0.720 (0.016)

RF 0.664 (0.017) 0.810 (0.029) 0.669 (0.003) 0.732 (0.012)

GP 0.655 (0.015) 0.804 (0.035) 0.661 (0.023) 0.724 (0.016)

LR-α 0.653 (0.014) 0.796 (0.023) 0.661 (0.025) 0.722 (0.012)

RF-α 0.693 (0.015)† 0.787 (0.025) 0.706 (0.026) 0.744 (0.016)†

GP-α 0.693 (0.016)† 0.787 (0.023) 0.705 (0.027) 0.743 (0.015)†

A "†” superscript indicates that there is no statistically significant difference
at p= 0.05 between estimates (column-wise), after performing a t-test.

Table 3. Classification accuracy estimates with their standard
deviation (in parentheses) for predicting student response (full
response versus otherwise) incorporating past observations and
student responses.

Method τ Accuracy Precision Recall F1 score

LR 1 0.677 (0.017) 0.798 (0.019) 0.684 (0.031) 0.736 (0.015)

RF 3 0.686 (0.014) 0.803 (0.023) 0.692 (0.028) 0.743 (0.014)†

GP 1 0.697 (0.015) 0.794 (0.019) 0.708 (0.029) 0.748 (0.013)†

LR-α 4 0.688 (0.024) 0.790 (0.018) 0.698 (0.032) 0.741 (0.021)

RF-α 1 0.701 (0.012) 0.784 (0.028) 0.716 (0.028) 0.748 (0.013)

GP-α 1 0.711 (0.015) 0.800 (0.019) 0.720 (0.024) 0.757 (0.014)

The 10-folds are identical to the ones used for obtaining the results
presented in Table 2. Results are enumerated for the following methods:
logistic regression with elastic net regularisation (LR), random forest (RF),
Gaussian Process (GP), and the same models under an expanded feature
set considering student attributes (⋆−α). τ denotes the number of previous
observations that were used (the best performing models are listed; all
results are presented in Supplementary Table 1). A "†” superscript indicates
that there is no statistically significant difference at p= 0.05 between
estimates (column-wise), after performing a t-test.
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upper-performance estimates, we can deduce that all feature
categories have a positive contribution to the classifier’s accuracy.

Long-term teacher communication strategy effect via a
statistical analysis
The immediate effect of a communication strategy can be
misleading as in the relative long-term it may be inducing no or
a negative impact. To better understand this, for any type of
teacher communication engaged at a specific time step t, we
computed the cumulative full student response rate for up to 9
consecutive future time steps; including t, these are time steps
{t, t+ 1,…, t+ 9}. By cumulative, we refer to the ratio of full
responses in an additive fashion across a sequence of these 10
time steps. Note that the initial communication belongs to a
certain category only, i.e., instances with secondary actions are not
considered as eligible starting points; during the following time
steps (t+ 1 to t+ 9), any other communication strategy (single or
a pair) may be performed. As this is a cumulative quantity, we
expect it to eventually converge to the average full response rate
in the data (56.59%). Apart from looking at each teacher’s
communication separately, we also grouped communication
strategies to visual prompts (object, picture) and non-visual
prompts. This grouping was motivated by two observations: (a)
full student response rates in our data were at their highest level
when visual prompts were applied, and (b) the conditional
distributions of the probability of full student response given
either of the two visual prompts (picture, object) were very similar
(see also our statistical analysis and Fig. 3c). For completeness, we
repeated this analysis for step-wise, non-cumulative full student
response rates, which are not expected to converge to a certain
quantity, but at the same time are providing more noisy
information. Figure 1 presents the outcome of this analysis.
Overall, visual prompts appear as more effective in generating full
student responses at the time of their application (t) as well as at
later time steps. Interestingly, visual prompts are enhancing their
positive impact one and two time-steps (t+ 1, t+ 2) after their
original application (Fig. 1a, c). Non-visual prompts show a more
spread incline, up to t+ 4. By looking at individual communica-
tions (Fig. 1b, d), we see that the use of pictures has been the most
effective. Furthermore, sequences that begin with a physical

prompt, although they initiate strong student response rates at
the time of their application, as the sequence of communications
progresses, always end up with the lowest rates either cumula-
tively (from time step t+ 7) or otherwise (from time step t+ 6).
We also assessed whether the previously presented outcomes

could be due to the hierarchies teachers might deploy in their
communication strategies. For example, when a non-intrusive
prompt (e.g. a verbal communication) does not produce the
desired outcome, it could be postulated that they might attempt
to use a more intrusive one (e.g. a physical prompt). Then, when
an intrusive prompt succeeds, they may revert back to using less
intrusive prompts. This could justify why in the second time step
(t+ 1) we observe a steep increase in full student response for
non-intrusive communications on the lower end (e.g. verbal), and
a noticeable decrease for physical prompts (Fig. 1b, d). However,
our data do not fully support this hypothesis. In particular, when a
teacher communication, other than a physical prompt, does not
result in a full student response, then the subsequent commu-
nication contains a physical prompt only with a probability of
0.310 and when that happens the probability of a full student
response is 0.549 (success rate). In general, when a teacher’s
communication is not successful, then the subsequent commu-
nication contains a verbal, visual, physical, and gesture prompt
with respective probabilities of 0.579, 0.405, 0.370, and 0.297 (with
0.374, 0.453, 0.496, and 0.415 respective success rates). Hence,
physical prompts are not necessarily the most common choice
when students are not responsive. Notably though, when a
communication is successful, physical prompts are very rarely
utilised subsequently (0.188). Additional statistics for sequential
patterns of communications in our data are provided in the SI.

Using student response to recommend teacher
communication strategies
The GP classifier outputs a real number that ranges from [−1, 1] and
indicates the specific support for a classification outcome. For
example, a value equal to 0.5, which results to a full student
response classification as it is >0, can be mapped to a 0.75
probability for this outcome. We acknowledge that this might result
into biased face values for these conditional probabilities52, but our
approach utilises their relative ranking during the decision-making

Table 4. Ablation analysis for the best performing model GP-α, τ= 1.

Feature set Accuracy Precision Recall F1 score

Past observations and outcomes 0.631 (0.015) 0.783 (0.022) 0.643 (0.026) 0.706 (0.015)

Teaching type(s) 0.597 (0.015) 0.870 (0.020) 0.599 (0.022) 0.709 (0.015)

Student’s observed emotional state 0.595 (0.023) 0.995 (0.003) 0.583 (0.023) 0.735 (0.018)

Teacher’s communication strategy 0.588 (0.015) 0.784 (0.045) 0.605 (0.026) 0.682 (0.019)

Student’s attributes 0.572 (0.025) 0.883 (0.016) 0.580 (0.027) 0.700 (0.022)

Context 0.572 (0.018) 0.837 (0.021) 0.586 (0.025) 0.689 (0.015)

Teaching objective 0.566 (0.023) 1 (0.000) 0.566 (0.023) 0.722 (0.019)

¬ Teacher’s communication strategy 0.684 (0.022) 0.791 (0.024) 0.694 (0.028) 0.739 (0.017)

¬ Context 0.693 (0.012) 0.785 (0.020) 0.707 (0.030) 0.743 (0.010)

¬ Past observations and outcomes 0.693 (0.015) 0.790 (0.020) 0.704 (0.026) 0.744 (0.014)

¬ Student’s attributes 0.695 (0.018) 0.795 (0.016) 0.705 (0.034) 0.747 (0.014)

¬ Student’s observed emotional state 0.696 (0.016) 0.784 (0.019) 0.709 (0.030) 0.744 (0.017)

¬ Teaching type(s) 0.696 (0.019) 0.802 (0.022) 0.704 (0.030) 0.749 (0.015)

¬ Teaching objective 0.705 (0.018) 0.794 (0.019) 0.716 (0.030) 0.752 (0.018)

All features 0.707 (0.015) 0.796 (0.020) 0.718 (0.026) 0.754 (0.014)

A single kernel function is used (Eq. (1)) across the entire feature space to allow a straightforward interpretation of the results. The upper part of the Table
enumerates accuracy estimates when a single feature category is used. At the lower part, "¬” denotes the absence of the specified feature category. For all
estimates we have also included their standard deviation (in parentheses).
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process which remains unaffected. For a given teacher-student
interaction instance, we can change the input of the classifier such
that all the different communication strategies or pairs of them are
activated one at a time, and obtain a set of full student response
probabilities each conditioned on the selected communication(s).
We can then choose the one that has the greatest probability of
generating a full student response. That way our model can produce
teacher communication strategy suggestions for specific teacher-
student interaction cases. Figure 2 provides an example to showcase
this. The teacher-student interaction scenario is listed on the left,

and the corresponding probability of full student response given
each possible teacher communication or pair of communications,
Pr full responsejteacher communication(s)ð Þ, is presented on the
right. These estimates were based on the best-performing model
(GP-α, τ= 1), trained on all the collected data. This particular
scenario under investigation was not present in the collected data,
i.e., it is a simulated observation (more examples are provided in
Supplementary Table 2). In this example, the next best communica-
tions to a physical prompt (that might not be a desirable
communication strategy) with quite strong probabilities of success
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Fig. 1 Long-term effects of teacher communication strategies. a Cumulative student full response rate with 95% confidence intervals
(shaded) across a sequence of consecutive teacher communications, where the first one is a visual prompt (solid line) or a non-visual prompt
communication strategy (dashed line); b Cumulative student full response rate across a sequence of consecutive teacher communications, for
all possible first teacher communication strategy options; c Student full response rate with 95% confidence intervals (shaded) for all points
within a sequence of consecutive teacher communications, where the first one is a visual prompt or a non visual prompt communication
strategy; d Student full response rate for all points within a sequence of consecutive teacher communications, for all possible first teacher
communication strategy options. For both (a) and (b), the averaging is progressive as new data points become available (cumulative) and
thus, it is expected to converge to the actual average full response rate in the data (56.59%). In contrast, for both (c) and (d), the averaging is
focused on each single sequence point and thus, it is not expected to converge to a certain quantity.
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Teaching objective Academic
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Fig. 2 An example of using the machine learning classifier for predicting the non-calibrated probability that one or more teacher
communication strategies would result in a full student response. The scenario parameters are listed in the table on the left—note that the
student profile and the characteristics of this teacher-student interaction are both out-of-sample (i.e. not existent in the collected data). The
chart on the right depicts the probabilities of full student response (for the interaction described on the left) for all single teacher
communication strategies as well as all possible pairings of them.
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are "object” when one teacher communication is performed (Pr=
0.837), or one of the combinations of "gesture and object” or
"picture and object” (Pr= 0.853 for both) when two communica-
tions are performed.

Statistical insights through the lens of the classifier
The collected data may include a biased representation of
teacher-student interaction instances and certainly cannot explore
all possible scenarios and teacher communication strategies.
Using our task formulation (as shown in Table 1), there exist 90720
different interaction scenarios, which when coupled with all
possible teacher communications in our problem formulation (a
total of 15 when dual communications are considered) are
generating more than 1.3 million distinct observations. However,
our collected data cover only 4880 of these (see “Methods”).
The number of possible observations increases further as we
begin to include past observations. To make a more robust
analysis, unveiling trends that might have been suppressed in the
collected data, we sampled this large feature space, and
generated a representative amount of more than 2.6 million
unique observations. We used the best-performing model (GP-α, τ
= 1) trained on all the collected instances to determine the
student response for each one of these sampled observations. In
this expanded data set, the features with the greatest absolute
correlation with student response were the negative student
emotion state (r=−0.431, p≪ 0.001), the physical prompt
communication (r= 0.341, p≪ 0.001), the verbal communication
(r=−0.292, p≪ 0.001), and the encouragement/praise teaching
type (r= 0.225, p≪ 0.001). In addition to correlations that were
already present in the original data set (see “Methods”), the
machine learning method also picked up two patterns related to
specific teacher communication strategies. The verbal commu-
nication was anti-correlated with full student response contrary to
the physical prompt communication that had the greatest positive
correlation. Figure 3 depicts the probability distribution of full

student responses for different teacher communications. We can
see that physical prompts are the most effective either as a single
communication or in combination with others (Fig. 3a, b).
However, this is expected given that this is the most intrusive
prompt. Verbal communications are the least effective. Visual
prompts are in a median position, although closer to the efficiency
of physical prompts, especially when dual communications are
considered. Interestingly, the two visual prompts (picture, object)
have almost identical full student response probability distribu-
tions (Fig. 3c). This encourages their consideration as one
communication category (visual prompts), but also highlights
that the classifier has picked up very similar patterns in the
generalised conditional distributions, Pr(full student response∣pic-
ture) and Pr(full student response∣object). Visual prompts are also
more effective compared to gestures, but the discrepancy is
relatively small (Fig. 3d). Finally, two teacher communications are a
better option than one, with (Fig. 3e) or without (Fig. 3f)
considering physical prompts.

DISCUSSION
A machine learning classifier was able to predict which type of
teacher communication was more likely to generate a positive
response by a student with ASC, indicating that the student
responded to the communication in a way intended by the
teacher, with an accuracy (0.664; RF model) greater than that
expected from a random (0.500) or major class (0.566) baseline
prediction. When student attributes, i.e., cognitive and language
levels, sex and age, are added into the function, the accuracy level
increases (0.693; RF or GP model), and when past information is
incorporated, accuracy improves further (0.711; GP-α, τ= 1). Thus,
the results of this exploratory research indicate that the developed
classifier, derived from observations of teacher-child interactions,
has the capacity to capture relevant signals from the data, which is
instrumental for its potential usefulness in classroom practice.
Based on the ablation analysis, teacher communications did

 Probability of full student response

 In
st

an
ce

 ra
tio

0

0.01

0.02

0.03

 * excl. dual comms.

 a Ver. Phys. pr. Vis. pr.

 * incl. dual comms.

 b Ver. Phys. pr. Vis. pr.  c Picture Object

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03
 d Gesture Visual prompt

0 0.2 0.4 0.6 0.8 1

 e One Two teacher comms.

0 0.2 0.4 0.6 0.8 1

 * excl. physical prompts

 f One Two teacher comms.

Fig. 3 Probability distribution of full student response under various scenarios, using the machine learning classifier. The following
scenarios are explored: a comparison between verbal teacher communications, physical, and visual prompts when only a single
communication is applied; b comparison between verbal teacher communications, physical, and visual prompts, including instances where
two (dual) communications are applied; c comparison between picture and object teacher communications (i.e. between the two visual
prompts); d comparison between gestures and visual prompts; e comparison between one and two teacher communications; f comparison
between one and two teacher communications when communications with a physical prompt are excluded. Straight vertical lines denote the
mean of the corresponding distribution.
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indeed have the greatest impact on classification accuracy (3.25%
of reduction on average), something the reinforces the impor-
tance of choosing the right type of communication.
The statistical analysis of consecutive observations (teacher

communication type→ student response) indicated that for visual
prompts (using a picture or an object) the observed consecutive
full response rate increases in the short-term, and converges to a
maximum (compared to all other communications) two-time steps
after its application. In contrast, physical prompts can have an
immediate positive impact followed by a significant performance
drop thereafter. In addition, for longer sequences that begin with
a physical prompt, the return to the mean is at a lower level of
full response, when compared to other teacher communication
strategies. Thus, the data suggests that the use of physical
prompts leads to less engagement by children with ASC, both at
the initial use of the prompt, and for subsequent interaction, at
least within the limits of the sequence size considered here. As
noted, there is general support in the literature for the potential
efficacy of visual aids in developing communication and autism
education, as well as implicit concerns about the potential impact
of physical prompting on independence. The results presented
here, however, provide empirical support for the extent to which
different teacher communication strategies in general classroom
situations have an impact on student responsiveness.
Our data also indicates that a full student response is more

likely with two rather than one teacher communication. This aligns
with related studies suggesting that verbal instruction by itself is
less effective with children with ASC25,26. In addition, it coincides
with the "common-sense” perspective that was pointed out by the
teachers involved in the study, i.e., that they would typically
expect to see better responsiveness when two communications
are used. The fact that the machine learning model produces
outcomes that coincide with what was generally expected serves
as further evidence to support its ecological validity.
The key potential strength of this model is in the possibility for

teachers, in advance of a teaching session, to input specific
variables, as in Fig. 2, relating to real-world scenarios in the
classroom, for a specific child with specific attributes and
conditions, and then review the recommendations of the model
for specific teacher communications. If this exercise provides
information that helps the teachers make more effective decisions
which, in turn, promote the effective inclusion of children with
ASC, then such an approach could make a real difference in autism
education. Our study has shown that there is potential for the use
of a machine learning model in this way.
There are few empirical studies that compare the relative

effectiveness of multiple different teacher communication strate-
gies in autism education, with most studies focusing on one or
two individual strategies. Our study is innovative in its use of a
machine learning approach to undertake a comparison of multiple
strategies. Many, if not most, studies in the field focus on the use
of specific interventions which involve the implementation of a set
of specified steps, often delivered in a discrete setting, i.e., in a
separate room next to the classroom with a teaching assistant,
and for a specific time period25,40,53. However, the vast majority of
the teaching of children with ASC takes place in general classroom
situations, not in relation to specific interventions54. Hence, our
focus on the use of different strategies in the free flow of
classroom interaction can shed further light on effective practice.
To the best of our knowledge, this is the first time that data

from direct observation of children with ASC and their teachers in
the classroom have been used in the development of a machine
learning model. To this end, our study is exploratory and has
specific limitations. Primarily, the results are based on a cohort of
seven students which is a relatively small number, and thus any
claims of generalisation need to be approached with caution.
We attempted to mitigate the effects of this, to an extent, by
collecting a significant amount of observations (>5000).

In addition, the attributes used to represent students are not
standardised metrics based on a clinical diagnosis, but instead are
educational indicators commonly used in UK schools, although as
argued they do have a degree of ecological validity. There may
well be other categories that could potentially be included in the
observation schedule such as the proximity between child and
teacher (via video analysis) or known child preferences such as
sensitivity to noise or light. It is, of course, the case, that expanding
the number of dependent categories in the model or its overall
complexity is likely to increase accuracy, but the corollary to this is
the requirement to collect and code a significantly increased
amount of observations. Clearly, larger cohorts that encompassed
a wider range of phenotypical variability in the expression of ASC
would allow for a more fine-grained and robust analysis of the
influence of student attributes, and particularly of their develop-
mental profile, on the accuracy of the function’s recommenda-
tions. It will also enable a more concise analysis of the longer-term
effects of teacher communications.

METHODS
Data collection
A data set was formed through structured classroom observations in 20
full-day sessions over 5 months in 2019 at a special school with criteria of
ASC for admission in East London. Participants included three teachers
(one male, two females), their teaching assistants (all females), and seven
children (four males, three females) aged from 6 to 12 years across 3
classes. The children’s P-scales range from P3 to P6; P-scale commonly
ranges from P1 to P8, with P1–P3 being developmental non-subject-
specific levels, and with P4–P8 corresponding to expected levels for
typical development at ages 5–648. In addition, the children are also
described as social or language partners on the SCERTS scale used by the
school. In our study, none of the participating students were classified as
conversational partners. The attributes of the student cohort are
presented in Supplementary Table 3.
A coding protocol was developed through an iterative process with the

participating teachers, and a grid was used for recording teacher-student
interaction observations. Comments and suggestions from the teachers
were taken into consideration and reflected throughout the multiple
revised drafts and the final versions of the coding protocol and recording
grid. For each observation instance, we recorded the student identifier,
time stamp, teaching objective, teaching type, the context for this teaching
type, the student’s observed emotional state, teacher’s communication
strategy, and the corresponding student response (outcome). Where
applicable we also recorded additional notes and the type of activity (e.g.
yoga). Although notes were used for context and interpretation for the
data analysis as a whole, they were not included in our machine learning
function experiments given their free-form inconsistency. Table 1 details all
the subcategories that were considered as inputs to the machine learning
models. Up to two teaching types and teacher communications could be
attributed to a single observation; the rest of the categories can only be
represented by one subtype. For example, an observation coded as "3,
academic, giving instruction/modelling, whole class, positive, verbal/
gesture, full response” (the time stamp is omitted) represents that student
no. "3”, being in a positive emotional state, fully responded to a teacher’s
verbal and gesture instruction, when teaching was taking place in a whole
class environment, its type was modelling and had an overall academic
objective. This may refer to an interaction instance where the teacher is
delivering a yoga lesson to the whole class: the teacher is demonstrating a
yoga move by gesturing while verbally explaining it and asking the
students to do the same; the student then responds by doing the move
with an observably happy expression.
All observed adult-student interactions during the school day, permitted

by the teachers, were recorded. The aim was to rapidly record situation-
strategy-outcome data points "in vivo” inside and outside the classroom.
Locations of the observations outside the classroom include the play-
ground, library, music room, main hall, canteen, therapy rooms, and
garden. Overall, these resources were regularly used throughout the
observational sessions. The instances recorded for each student vary
slightly from 753 to 880 (μ= 780, σ= 45) and in total a sample of 5460 full
observations were collected.
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Statistical characterisation of collected data
From the 5460 observations we collected, only 5001 are distinct. If we
ignore the student’s response, unique observations are reduced to 4880,
and if we also ignore the teacher’s communication strategy, then this
number becomes 4357. Hence, there are instances in our data that are
overlapping, but this is expected given that teachers and students may
perform similarly throughout a specific teaching session. The level of
support for each teacher communication strategy is equal to 3128 (709)
times for a verbal communication, 1717 (357) for using an object, 1642
(181) for the gesture, 1465 (575) for a physical prompt, and 981 (165) for a
picture, where in parentheses we report the number of times the
underpinned communication was the only one performed (from a
maximum of two communications). Although the small student and
teacher sample does not allow for generalisations, we see that teachers
tend to verbally engage with students quite frequently (57.29%), either in
combination with another communication or as the sole means of
communication. The full student response rate for each communication
strategy (irrespectively of co-occurrence with another one) is equal to
64.02% (64.90%, 60.68%) for picture, 60.92% (62.48%, 57.73%) for an
object, 60.61% (64.34%, 53.56%) for a physical prompt, 57.67% (59.67%,
51.80%) for a gesture, and 53.20% (55.21%, 46.45%) for a verbal
communication; the rates in the parentheses are breakdowns for the
language and social partner SCERTS classifications, respectively, reaffirming
those language partners are in general more responsive, with a more
pronounced relative difference when verbal or physical prompts are
deployed. In addition, performing two versus one communication is
more effective in producing a full student response. In particular, the full,
partial, and no response breakdowns for single communications are
50.58%, 21.84%, and 27.58%, compared to 60.01%, 21.82%, and 18.17% for
two teacher communications. Although the presence of two communica-
tions naturally increases the probability of choosing the correct means of
interaction, the current outcome reaffirms the hypothesis that an incorrect
communication strategy does not greatly affect the student when a
desirable one co-occurs. The observed features with the greatest bivariate
correlation with the student response are the negative emotional state of
the student (r=−0.184, p≪ 0.001), the encouragement/praise teaching
type (r= 0.124, p≪ 0.001), and the redirection teaching type (r=−0.124,
p≪ 0.001).

Student response (outcome) classification with machine
learning
A machine learning classification task aims to learn a function f: X→ y,
where X 2 Rm ´ n , y∈ {1,…, k}m denote the observations (inputs) and the
response variable (outcomes), respectively; m, n, k represent the numbers
of observations and outcomes, observation categories (features), and
outcome classes, respectively. Here, in the most feature-inclusive case, we
define X as an aggregation of six feature categories, namely student
attributes (age, sex, P-level, SCERTS classification), teaching objective,
teaching type, context for teaching type, the student’s observed emotional
state, and teacher’s communication strategy. All feature categories, apart
from age, were coded as c-dimensional tuples of 1s and 0s, where c is the
respective number of different subtypes for each category (Table 1), and
ones are used to denote the activated subtype(s). Student age was coded
as a real number from 0 to 1, using a linear mapping scheme, where 0 and
1 represent 5 and 12 years of age, respectively. The response variable y
takes a binary definition representing two classes, a full response output
versus otherwise. The rational behind this merging was to generate a more
balanced classification task (56.59% full student response labels) as well as
alleviate any issues arising from a miscategorisation of partial (21.86%) or
no response (21.55%) outcomes.
We train and evaluate the performance of various machine learning

functions in predicting the student’s type of response. We deploy three
broadly used classifiers in the literature: (a) a variant of logistic regression
(LR)55 that uses elastic net regularisation56 for feature selection, (b) a
random forest (RF)57 with 2000 decision trees, and (c) a Gaussian Process
(GP)58 with a composite covariance function (or kernel) that we describe
below. We devise three problem formulations, where we incrementally add
more elements in the observed data (input). In the first instance, we
consider all observed categories apart from student attributes. Then, we
include student attributes as part of the feature space and, to represent this
change, augment method abbreviations with "-α”. Finally, in both previous
setups, we explore autoregression by including the observed data and
student responses for up to the previous τ= 5 teacher-student interactions.

While performing autoregression, we maintain all three types of recorded
student responses in the input data.
Although logistic regression and random forests treat the increased input

space without any particular intrinsic additive modelling, the modularity of
the GP allows us to specify more customised covariance functions on these
different inputs. GP models assume that f: X→ y is a probability distribution
over functions denoted as f ðxÞ � GP ðμðxÞ; kðx; x0ÞÞ, where x; x0 are rows
of X, μ(⋅) is the mean function of the process, and k(⋅,⋅) is the covariance
function (or kernel) that captures statistical relationships in the input space.
We assume that μ(x)= 0, a common setting for various downstream
applications59–62, and use the following incremental (through summation)
covariance functions:

kðx; x0Þ ¼ kSEðxc; x0cÞ ; (1)

kðx; x0Þ ¼ kSEða; a0Þ þ kSEðxc; x0cÞ ; (2)

kðx; x0Þ ¼ kSEðxc; x0cÞ þ kSEðxp; x0pÞ þ kSEðyp; y0pÞ ; and (3)

kðx; x0Þ ¼ kSEða; a0Þ þ kSEðxc; x0cÞ þ kSEðxp; x0pÞ þ kSEðyp; y0pÞ ; (4)

where kSE(⋅,⋅) denotes the squared exponential covariance function,
xc denotes the current observation including the teacher’s communication
strategy, a is the vector containing student attributes, and xp, yp denote the
τ past observations and student response outcomes, respectively. There-
fore, Eq. (1) refers to the kernel in the simplest task formulation where only
currently observed data are used, Eq. (2) expands on Eq. (1) by adding a
kernel for student attributes, and Eqs. (3) and (4) add kernels for including
previous observations and student responses (autoregression). Using an
additive problem formulation, where a kernel focuses on a part of the
feature space, generates a simpler optimisation task and tends to provide
better accuracy63. This is also confirmed by our empirical results.

Training and evaluating classifiers
We apply 10-fold cross-validation as follows. We randomly shuffle the
observed samples (5460 in total) and then generate 10 equally sized folds.
We use 9 of these folds to train a model, and 1 to test, repeating this
training-testing process 10 times, using all formed folds as test sets. By
doing this we are solving a task, whereby observations from the same
student can exist in both the training and the test sets (although
these observations are strictly distinct). That was an essential compromise
here given the limited number of different students (7). The same exact
training and testing process (and identical data splits) is used for all
classification models and problem formulations. We learn the regularisa-
tion hyperparameters of logistic regression by cross-validating on the
training data; this may result in potentially different choices for each fold.
The hyperparameters of the GP models are learned using the Laplace
approximation58,64. Performance is assessed using standard classification
metrics, and in particular accuracy, precision, recall, and their harmonic
mean known as the F1 score. For completeness, we also assess the best-
performing model by testing on data from a single student that is not
included in the training set, repeating the same process for all students
in our cohort (leave-one-student-out, 7-fold cross-validation; see SI for
more details).

Ethics approval
Ethical approval was granted by the Research Ethics Committee at the
Institute of Education, University College London (United Kingdom), where
the research was conducted. The parents/guardians of the participating
children, the school management, and their teachers gave their written
informed consent. All participant information has been anonymised. Raw
data and derived data sets were securely stored on the researchers’
encrypted computer systems with password protection.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data sets generated during and/or analysed during the current study are not
publicly available due to their sensitive nature and cannot be shared upon request as
this would require specific new written consent from the parents of each child.
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CODE AVAILABILITY
We have used standard and contributed MATLAB® (R2019a) functions or libraries to
conduct experiments. In particular, we have used function lassoglm for logistic
regression with elastic net regularisation, function TreeBagger for the random
forest, and the Gaussian Process Regression and Classification Toolbox (version 4.2,
gaussianprocess.org/gpml/code/matlab/doc/) for deriving GP models.
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