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From online searches to influenza-like illness rates

Combining the n 5 45 highest-scoring queries was found to obtain
the best fit. These 45 search queries, although selected automatically,
appeared to be consistently related to ILIs. Other search queries in the
top 100, not included in our model, included topics like ‘high school
basketball’, which tend to coincide with influenza season in the
United States (Table 1).

Using this ILI-related query fraction as the explanatory variable,
we fit a final linear model to weekly ILI percentages between 2003 and
2007 for all nine regions together, thus obtaining a single, region-
independent coefficient. The model was able to obtain a good fit with
CDC-reported ILI percentages, with a mean correlation of 0.90
(min 5 0.80, max 5 0.96, n 5 9 regions; Fig. 2).

The final model was validated on 42 points per region of previously
untested data from 2007 to 2008, which were excluded from all
previous steps. Estimates generated for these 42 points obtained a
mean correlation of 0.97 (min 5 0.92, max 5 0.99, n 5 9 regions)
with the CDC-observed ILI percentages.

Throughout the 2007–08 influenza season we used preliminary
versions of our model to generate ILI estimates, and shared our
results each week with the Epidemiology and Prevention Branch of
Influenza Division at the CDC to evaluate timeliness and accuracy.
Figure 3 illustrates data available at different points throughout the
season. Across the nine regions, we were able to estimate consistently
the current ILI percentage 1–2 weeks ahead of the publication of
reports by the CDC’s US Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful for
public health planning, we sought to validate further our model

against weekly ILI percentages for individual states. The CDC does
not make state-level data publicly available, but we validated our
model against state-reported ILI percentages provided by the state
of Utah, and obtained a correlation of 0.90 across 42 validation points
(Supplementary Fig. 3).

Google web search queries can be used to estimate ILI percentages
accurately in each of the nine public health regions of the United
States. Because search queries can be processed quickly, the resulting
ILI estimates were consistently 1–2 weeks ahead of CDC ILI surveil-
lance reports. The early detection provided by this approach may
become an important line of defence against future influenza epi-
demics in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health officials
and health professionals to respond better to seasonal epidemics. If a
region experiences an early, sharp increase in ILI physician visits, it
may be possible to focus additional resources on that region to
identify the aetiology of the outbreak, providing extra vaccine capa-
city or raising local media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-based dia-
gnoses and surveillance. Notable increases in ILI-related search activity
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Figure 1 | An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-
sample points during cross-validation was obtained by summing the top 45
search queries. A steep drop in model performance occurs after adding query
81, which is ‘oscar nominations’.

Table 1 | Topics found in search queries which were found to be most cor-
related with CDC ILI data

Search query topic Top 45 queries Next 55 queries
n Weighted n Weighted

Influenza complication 11 18.15 5 3.40
Cold/flu remedy 8 5.05 6 5.03
General influenza symptoms 5 2.60 1 0.07
Term for influenza 4 3.74 6 0.30
Specific influenza symptom 4 2.54 6 3.74
Symptoms of an influenza
complication

4 2.21 2 0.92

Antibiotic medication 3 6.23 3 3.17
General influenza remedies 2 0.18 1 0.32
Symptoms of a related disease 2 1.66 2 0.77
Antiviral medication 1 0.39 1 0.74
Related disease 1 6.66 3 3.77
Unrelated to influenza 0 0.00 19 28.37
Total 45 49.40 55 50.60

The top 45 queries were used in our final model; the next 55 queries are presented for
comparison purposes. The number of queries in each topic is indicated, as well as query-
volume-weighted counts, reflecting the relative frequency of queries in each topic.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.
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Figure 3 | ILI percentages estimated by our model (black) and provided by
the CDC (red) in the mid-Atlantic region, showing data available at four
points in the 2007-2008 influenza season. During week 5 we detected a
sharply increasing ILI percentage in the mid-Atlantic region; similarly, on 3
March our model indicated that the peak ILI percentage had been reached
during week 8, with sharp declines in weeks 9 and 10. Both results were later
confirmed by CDC ILI data.
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From online searches to influenza-like illness ratesOnline data for health  (2/3)

Google Flu Trends (discontinued)Google Flu Trends (discontinued)
popularising an established idea

Ginsberg et al. (2009)

Eysenbach (2006); Polgreen et al. (2008)
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From online searches to influenza-like illness rates

Task abstraction

• input – frequency of search queries over time: X∈Rn×s

• output – corresponding influenza-like illness (ILI) rate: y∈Rn

• regression task, i.e. learn f : X → y

Modelling

• originally proposed models were evidently not good solutions1

• new families of methods seem to work OK in various geographies2

1Cook et al. (2011); Olson et al. (2013); Lazer et al. (2014)
2Lampos et al. (2015a); Yang et al. (2015); Lampos et al. (2017); Wagner et al. (2018)
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Why estimate ILI rates from online search statistics?

Common arguments for:

• complements traditional syndromic surveillance
✓ timeliness
✓ broader demographic coverage, larger cohort
✓ broader geographical coverage
✓ not affected by closure days or national holidays
✓ lower cost

• applicable to locations that lack an established health system

✓ oxymoron (supervised learning)
✓ motivated this paper
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Our contribution in a nutshell

Main task

• train a model for a source location where historical syndromic
surveillance data is available, and

• transfer it to a target location where syndromic surveillance data is
not available or, in our experiments, ignored

Transfer learning steps

1. Learn a linear regularised regression model for a source location
2. Map search queries from the source to the target domain

(languages may differ)
3. Transfer the source weights to the target domain

(might involve weight re-adjustment)
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Transfer learning task definition

query frequency xij = #query j issued during ∆ti

#all queries issued during ∆ti
for a location

Source domain
• DS =

{
(xi, yi)

}
, i∈{1, ..., n}

• xi ∈Rs = {xij}, j ∈{1, ..., s}: frequency of source queries
• yi ∈R: ILI rate for time interval i

Target domain
• DT = {x′

i}, i∈{1, ..., m}
• x′

i ∈Rt: frequency of target queries
• note that t need not equal s

�� ��Aim: Given DS and DT, estimate y′
i
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Step 1 – Learn a regression function in the source domain

Source domain
• xi ∈Rs = {xij}, j ∈{1, ..., s}: frequency of source queries
• yi ∈R: ILI rate for time interval i

Elastic net1 (constrained)

argmin
w,β

n∑
i=1

(
yi − β −

( s∑
j=1

xijwj

))2

+ λ1

s∑
j=1

|wj | + λ2

s∑
j=1

w2
j

subject to w ≥ 0

1Zou and Hastie (2005)

Zou, Lampos, Cox. Transfer learning for unsupervised flu models from online search. WWW ’19. 6/29

https://dx.doi.org/10.1145/3308558.3313477


Step 1 – Learn a regression function in the source domain

Elastic net (constrained)

argmin
w,β

n∑
i=1

(
yi − β −

( s∑
j=1

xijwj

))2

+ λ1

s∑
j=1

|wj | + λ2

s∑
j=1

w2
j

subject to w ≥ 0

Why use elastic net?
• more straightforward to transfer
• few training instances
• previous successful application1

• combines ℓ1- and ℓ2-norm regularisation: sparse solution, model
consistency under collinearity

1Lampos et al. (2015a,b); Zou et al. (2016); Lampos et al. (2017)
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Step 1 – Learn a regression function in the source domain

Elastic net (constrained)

argmin
w,β

n∑
i=1

(
yi − β −

( s∑
j=1

xijwj

))2

+ λ1

s∑
j=1

|wj | + λ2

s∑
j=1

w2
j

subject to w ≥ 0

Why apply a non-negative weight constraint?
• (how?) coordinate descent restricting negative updates to 0

• worse performing model for the source location
• but enables a more comprehensive transfer
• better performance at the target location
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Step 1 – Learn a regression function in the source domain

Selecting queries prior to applying elastic net
• hybrid feature selection similarly to previous work1

• derive query embeddings eq using fastText2

• define a flu context/topic: T = {‘flu’, ‘fever’}
• compute each query’s similarity to T using

g (q, T ) = cos (eq, eT1) × cos (eq, eT2)

cos(·, ·) is mapped to [0, 1]

• filter out queries with either g ≤ 0.5 or r ≤ 0.3 (corr. with ILI)�� ��QS: remaining queries after applying elastic net

1Zou et al. (2016); Lampos et al. (2017); Zou et al. (2018)
2Bojanowski et al. (2017)
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Step 2 – Mapping source to target queries

Task: map QS to a subset of PT (pool of target queries)

How?

• direct translation does not work
— invalid search queries
— worse performance

• semantic similarity, Θs: (cross-lingual) word embeddings

• temporal similarity, Θc: correlation between frequency time series

• hybrid similarity: Θ = γΘs + (1 − γ)Θc, γ ∈ [0, 1]

• consider 1-to-k mappings
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Step 2 – Semantic similarity (Θs)

Same language in both domains?

• Use cosine similarity on query embeddings

If not, derive bi-lingual embeddings1

• m core translation pairs, σ →τ , with embeddings Eσ, Eτ ∈Rm×d

• learn a transformation matrix, W∈Rd×d, by minimising:

argmin
W

∥EσW − Eτ ∥2
2 , subject to W⊤W = I

• orthogonality constraint:
— Eτ ≈ EσW and Eσ ≈ Eτ W⊤

— improves the performance of machine translation2

• solution: W = VU⊤, where E⊤
τ Eσ = UΣV⊤ (SVD)

1Smith et al. (2016)1Smith et al. (2016) 2Artetxe et al. (2016)
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Step 2 – Semantic similarity (Θs)

Compute a query (source) to query (target) similarity matrix
• source, target query embedding: eqi

, eqj
∈R1×d

• cosine similarity matrix Ω∈Rs×|PT|, ωij =

(
eqi

W e⊤
qj

)
(

∥eqi
W∥2∥eqj

∥2

)

Inverted softmax
• using ωij directly for translations can generate hubs

— target query is similar to way too many different source queries
— reduces performance of machine translation1

• instead, given a source query qi, find a target qj that maximises

Pj→i = exp (η ωij)

αj

s∑
z=1

exp (η ωiz)

1Dinu et al. (2014); Smith et al. (2016)
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Step 2 – Semantic similarity (Θs)

Pj→i = exp (η ωij)

αj

s∑
z=1

exp (η ωiz)

• αj : ensures Pj→i is a probability
• s: number of source queries
• η: learned by maximising the log probability over the alignment

dictionary (σ →τ): argmax
η

∑
pairs ij

ln (Pj→i)

Inverted softmax

• probability that a target query translates back to the source query
• hub target query =⇒ large denominator
• top-k target queries are selected as possible mappings of qi
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Step 2 – Semantic similarity (Θs)

Inverted softmax

• probability that a target query translates back to the source query
• hub target query =⇒ large denominator
• top-k target queries are selected as possible mappings of qi

Determine the semantic similarity score by

• using these top-k queries (average if k > 1)
• and computing

Θs(qi, qj) =
(

eqi
W e⊤

qj

)
/
(

∥eqi
W∥2∥eqj

∥2

)
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Step 2 – Temporal similarity (Θc)

Exploit query relationship in the frequency space:

• important relationship; based on the core statistical input
information

• compute pair-wise correlation between the frequency time series of
source and target queries

• flu seasons may be offset in different locations
✓ compute all correlations using a shifting window of ±ξ weeks
✓ optimal window lij (source query qi, target query qj) is

independently computed for each target query

Θc(qi, qj) = ρ
(

xi(t), xj(t + lij)
)
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Step 3 – Determining weights for target queries

Previous steps

• source query qi allocated weight wi

• source query qi mapped to a set Ti of k ≥ 1 target queries

Weight transfer

• if k = 1, directly assign wi to the single target query
• if k > 1, wi is distributed across the k identified target queries

Weighting schemes

• uniform: w′
j = wi/k

• based on Θij , j ∈ {2, . . . , k}: w′
j = wiΘij∑

qj∈Ti

Θij
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Experiments – Transfer tasks

Source location: United States (US)

Target locations

• France (FR): from English to French
• Spain (ES): from English to Spanish
• Australia (AU): from English to English, different hemisphere,

greater temporal difference in flu outbreaks

Why choose locations where syndromic surveillance systems exist?

• more robust evaluation at this preliminary stage
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Experiments – Data

Search query frequencies from Google

• retrieved from the Google Correlate endpoint
• z-scored (by default)
• weekly rates
• September 2007 to August 2016 (both inclusive)
• # queries: 34,121 (US), 29,996 (FR), 15,673 (ES), 8,764 (AU)

Influenza-like illness (ILI) rates

• data from health organisations in these countries
(CDC, SN, SISSS, ASPREN)

• same date range, weekly ILI rates
• z-scored as the metric systems vary in these countries
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Experiments – ILI rates in the source vs. target country

How similar are they?
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Experiments – Evaluation

Protocol
• train a model using 5 flu seasons, test it on the next
• evaluate performance on the the last 4 flu seasons of our data set
• Θc: use a window of ξ = ±6 weeks
• source query → k = {1, ..., 5} target queries
• Pearson correlation, mean absolute error (MAE), root mean

squared error (RMSE)

Baseline models
• worst case baseline (R): random shuffling of identified query pairs
• unsupervised learning (U) using most semantically relevant queries
• best case threshold (S): supervised learning using elastic net
• transfer component analysis (TCA)1

1Pan et al. (2009)
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Experiments – General observations

In general:

• semantic similarity (Θs) is performing better than temporal similarity
(Θc) when used in isolation

• using semantic or temporal similarity in isolation provides inferior
performance, i.e. hybrid similarity works best

• values for k > 1 did not help the hybrid similarity to improve

• when k > 1, the non-uniform way of weighting was performing better

Closer look at results for γ = 0, γ = 1 and the best choice of γ�� ��Θ = γΘs + (1 − γ)Θc, γ ∈ [0, 1]
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Experiments – Results for France�� ��Θ = γΘs + (1 − γ)Θc, γ ∈ [0, 1]

Avg. correlation
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U: 0.916
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R: 87.729
U: NA
S: 25.088

R: 101.845
U: NA
S: 42.349
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Experiments – Results for France
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Experiments – Results for Spain�� ��Θ = γΘs + (1 − γ)Θc, γ ∈ [0, 1]
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Experiments – Results for Spain
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Experiments – Results for Australia�� ��Θ = γΘs + (1 − γ)Θc, γ ∈ [0, 1]
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Experiments – Results for Australia
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Experiments – Results for different values of γ

• hybrid similarity optima differ
per target country

• optimal γ depends on the
characteristics of the input
space

• µ(Θc)/µ(Θs) across queries
relates to optimal γ: 1.143
(FR), 0.982 (ES), 2.261 (AU)

• identifying optimal γ

automatically is an open task
• γ = 0.5 provides better results

than non hybrid similarities
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Experiments – Where do some of the errors come from?

Error analysis setup

• investigate the models for the optimal gammas
• compute the mean ILI estimate impact (%) during the 10 weeks

with highest MAE across all test periods per target country
• identify the worst-5 query pairings

— – — – — – —
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• investigate the models for the optimal gammas
• compute the mean ILI estimate impact (%) during the 10 weeks

with highest MAE across all test periods per target country
• identify the worst-5 query pairings

— – — – — – —

France – from English (US) to French
• 24 hour flu → grippe intestinale
• influenza a treatment → grippe traitement
• remedies for colds → rhume de cerveau
• child temperature → température du corps
• child fever → fièvre adulte

(13.24%)
(8.07%)
(6.75%)
(6.37%)
(6.04%)
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• investigate the models for the optimal gammas
• compute the mean ILI estimate impact (%) during the 10 weeks

with highest MAE across all test periods per target country
• identify the worst-5 query pairings

— – — – — – —

Spain – from English (US) to Spanish
• mucinez for kids → tratmiento de la grippe
• child fever → sinusitis
• influenza a treatment → con gripe
• symptoms pneumonia → bronquitis
• child temperature → temperatura corporal

(20.76%)
(7.76%)
(7.02%)
(6.04%)
(5.62%)
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• compute the mean ILI estimate impact (%) during the 10 weeks

with highest MAE across all test periods per target country
• identify the worst-5 query pairings

— – — – — – —

Australia – from English (US) to English (AU)
• 24 hour flu → flu duration
• child temperature → warmer
• how to treat a fever → have a fever
• tamiflu and breastfeeding → flu while pregnant
• robitussin cf → colds

(11.51%)
(9.77%)
(6.94%)
(6.81%)
(5.18%)
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Conclusions and future work

Summary of outcomes

• previous efforts were heavily based on supervised learning models
• transfer learning method to enable modelling in areas that lack an

established syndromic surveillance system
— unsupervised (no ground truth data at the target location)
— core operation: how to map source to target queries

• satisfactory performance (e.g. r > .92)
• 21.6% increase in RMSE compared to a fully supervised model

Future work

• study where target location is a low or middle income country
— harder to evaluate; qualitative analysis by experts

• investigate parameters γ (similarity balance) and k (number of
target queries in a mapping) further and learn them from the data
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