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Google Flu Trends (discontinued)
popularising an established idea

From online searches to influenza-like illness rates

google Org FiuTrends

Google.org home

Explore flu trends around the world
Dengue Trends
- Tren We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses aggregated Google search data
Flu Trends 1o estimate lu activiy. Leam more »
Home

Select country/regior

How does this work?
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Ginsberg et al. (2009)

Language: | english (United States)

Eysenbach (2006); Polgreen et al. (2008)
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online searches to influenza-like illness rates

Task abstraction

= input — frequency of search queries over time: X eRm*s
= output — corresponding influenza-like illness (ILI) rate: yecR"™

= regression task, i.e. learn f: X — vy
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From online searches to influenza-like illness rates

Task abstraction

= input — frequency of search queries over time: X eRm*s
= output — corresponding influenza-like illness (ILI) rate: yecR"™

= regression task, i.e. learn f: X — vy

Modelling

= originally proposed models were evidently not good solutions!

= new families of methods seem to work OK in various geographies?

1Cook et al. (2011); Olson et al. (2013); Lazer et al. (2014)
2Lampos et al. (2015a); Yang et al. (2015); Lampos et al. (2017); Wagner et al. (2018)
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Why estimate ILI rates from online search statistics?

Common arguments for:

= complements traditional syndromic surveillance
v timeliness
v’ broader demographic coverage, larger cohort
v broader geographical coverage

v not affected by closure days or national holidays
v’ lower cost

= applicable to locations that lack an established health system
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Why estimate ILI rates from online search statistics?

Common arguments for:

= complements traditional syndromic surveillance
v timeliness
v’ broader demographic coverage, larger cohort
v broader geographical coverage
v not affected by closure days or national holidays
v’ lower cost

= applicable to locations that lack an established health system

v oxymoron (supervised learning)
v' motivated this paper
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Our contribution in a nutshell

Main task

= train a model for a source location where historical syndromic
surveillance data is available, and

= transfer it to a target location where syndromic surveillance data is
not available or, in our experiments, ignored
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bution in a nutshell

Main task
= train a model for a source location where historical syndromic
surveillance data is available, and

= transfer it to a target location where syndromic surveillance data is
not available or, in our experiments, ignored

Transfer learning steps

1. Learn a linear regularised regression model for a source location
2. Map search queries from the source to the target domain
(languages may differ)
3. Transfer the source weights to the target domain
(might involve weight re-adjustment)
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Transfer learning task definition

#query j issued during At;
#all queries issued during At;

query frequency z;; = for a location

Source domain
= Ds = {(xi,9:) }, i€{1,...,n}
= x, €R® = {;;}, j€{1, ..., s}: frequency of source queries

= y; €R: ILI rate for time interval ¢

Target domain
= Dy ={x}}, ie{l,...,m}
» x,eR": frequency of target queries

= note that ¢ need not equal s
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Transfer learning task definition

#query j issued during At;
#all queries issued during At;

query frequency z;; = for a location

Source domain
= Ds = {(xi,9:) }, i€{1,...,n}
= x, €R® = {;;}, j€{1, ..., s}: frequency of source queries

= y; €R: ILI rate for time interval ¢

Target domain
= Dy ={x}}, ie{l,...,m}
» x,eR": frequency of target queries

= note that ¢ need not equal s

[Aim: Given Ds and D, estimate y;]
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Step 1 — Learn a ression function in the source domain

Source domain
= x;€R° = {z;;},7€{L, ..., s}: frequency of source queries

= gy, €R: LI rate for time interval i

Elastic net! (constrained)

n S 2 S S
argminz yi — B — (lejw]> +)\12\wj| +)\22wj2-
w.h i j=1 j=1 j=1

B

subject tow >0

1Zou and Hastie (2005)
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Step 1 — Learn a ression function in the source domain

Elastic net (constrained)
2

n S S S
argminz yi — B — (Zl”w]> + A\ Z |w;| + A2 Zw?
w i=1 j=1 1 j=1

B j=

subject tow > 0

Why use elastic net?
= more straightforward to transfer
= few training instances
= previous successful application®

= combines /1- and fo-norm regularisation: sparse solution, model
consistency under collinearity

"Lampos et al. (2015a,b); Zou et al. (2016); Lampos et al. (2017)
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Step 1 — Learn a ression function in the source domain

Elastic net (constrained)
2

n S S S
argminz yi — B — (Zl”w]> + A\ Z |w;| + A2 Zw?
w i=1 j=1 1 j=1

B j=

subject tow > 0

Why apply a non-negative weight constraint?
= (how?) coordinate descent restricting negative updates to 0
= worse performing model for the source location
= but enables a more comprehensive transfer

= better performance at the target location
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Step 1 — Learn a ression function in the source domain

Selecting queries prior to applying elastic net

= hybrid feature selection similarly to previous work!
= derive query embeddings e, using fastText?
= define a flu context/topic: T = {'flu’, ‘fever'}
= compute each query’s similarity to 7 using
9(@.T) = cos (eq. e7;) % cos (eq. e73)

cos(+, ) is mapped to [0, 1]

1Zou et al. (2016); Lampos et al. (2017); Zou et al. (2018)

?Bojanowski et al. (2017)
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Step 1 — Learn a regression function in the source domain

Selecting queries prior to applying elastic net

hybrid feature selection similarly to previous work!
derive query embeddings e, using fastText?
define a flu context/topic: T = {'flu’, ‘fever'}
compute each query’s similarity to 7 using

9(@.T) = cos (eq. e7;) % cos (eq. e73)

cos(+, ) is mapped to [0, 1]

filter out queries with either g < 0.5 or r < 0.3 (corr. with ILI)

[Qs: remaining queries after applying elastic net]

1Zou et al. (2016); Lampos et al. (2017); Zou et al. (2018)

?Bojanowski et al. (2017)
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Step 2 — Mapping source to target queries

Task: map Qs to a subset of Pr (pool of target queries)
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Step 2 — Mapping source to target queries

Task: map Qs to a subset of Pr (pool of target queries)

How?

= direct translation does not work
— invalid search queries
— worse performance
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Step 2 — Mapping source to target queries

Task: map Qs to a subset of Pr (pool of target queries)

How?

= direct translation does not work
— invalid search queries
— worse performance

= semantic similarity, O4: (cross-lingual) word embeddings
= temporal similarity, O.: correlation between frequency time series
= hybrid similarity: © =10, + (1 — )0, v € [0,1]

= consider 1-to-k mappings
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Step 2 — Semantic similarity (O;)

Same language in both domains?

= Use cosine similarity on query embeddings
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Step 2 — Sema

Same language in both domains?

= Use cosine similarity on query embeddings
If not, derive bi-lingual embeddings'

= m core translation pairs, ¢ — 7, with embeddings E,, E, cRmxd

= learn a transformation matrix, W e R4x4, by minimising:

argmin ||[E, W — ETHg , subject to WIW =1
W

LSmith et al. (2016)

Zou, Lampos, Cox. Transfer learning for unsupervised flu models from online search. WWW '19. 10/29


https://dx.doi.org/10.1145/3308558.3313477

Step 2 — Sema

Same language in both domains?

= Use cosine similarity on query embeddings

If not, derive bi-lingual embeddings'
= m core translation pairs, ¢ — 7, with embeddings E,, E, cRmxd

= learn a transformation matrix, W e R4x4, by minimising:

argmin ||[E, W — ETHg , subject to WIW =1
W

= orthogonality constraint:
—E, ~E,Wand E, x E,W'T
— improves the performance of machine translation?

= solution: W = VU, where E'E, = UXV' (SVD)

LSmith et al. (2016) ZArtetxe et al. (2016)
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Step 2 — Sema

Compute a query (source) to query (target) similarity matrix

= source, target query embedding: e, e, cRIxd
(equ e;:,)

= cosine similarity matrix QeRs¥IPrl ), =
(Ileq Wilzlleq, 12
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Step 2 — Sema

Compute a query (source) to query (target) similarity matrix

= source, target query embedding: e, e, cRIxd
(equ e;:,)
(Ileq Wilzlleq, 12

= cosine similarity matrix QeRs*IPrl wij =

Inverted softmax
= using w;; directly for translations can generate hubs
— target query is similar to way too many different source queries

— reduces performance of machine translation!
= instead, given a source query g;, find a target g; that maximises

exp (nwi;)

S
a; Y exp (nuwi.)
z=1

Pii=

'Dinu et al. (2014); Smith et al. (2016)
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Step 2 — Semantic similarity (O

exp (nwij)

Pjni=——
a; Z exp (nw;z)
z=1

= «j: ensures P;_,; is a probability
= s: number of source queries

= 1): learned by maximising the log probability over the alignment
dictionary (o —7): argmax Z In (Pj_;)

pairs ij
Inverted softmax

= probability that a target query translates back to the source query
= hub target query = large denominator

= top-k target queries are selected as possible mappings of ¢;
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Step 2 — Semantic similarity (O

Inverted softmax

= probability that a target query translates back to the source query
= hub target query = large denominator

= top-k target queries are selected as possible mappings of g;

Determine the semantic similarity score by

= using these top-k queries (average if k > 1)

= and computing

Ouai,0;) = (e Wey )/ (lleq Wiklleq, 1)
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Step 2 — Temporal similarity (©.)

Exploit query relationship in the frequency space:

= important relationship; based on the core statistical input
information
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Step 2 — Temporal similarity (©.)

Exploit query relationship in the frequency space:
= important relationship; based on the core statistical input
information

= compute pair-wise correlation between the frequency time series of

source and target queries

= flu seasons may be offset in different locations
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Step 2 — Temporal similarity (©.)

Exploit query relationship in the frequency space:
= important relationship; based on the core statistical input
information

= compute pair-wise correlation between the frequency time series of

source and target queries
= flu seasons may be offset in different locations
v' compute all correlations using a shifting window of +£ weeks

v optimal window [;; (source query g;, target query ¢;) is
independently computed for each target query

Oclai,a) = p(xi(t),%;(t + 1))
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Step 3 — Determining weights for t

Previous steps

= source query ¢; allocated weight w;

= source query ¢; mapped to a set 7; of k > 1 target queries
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Step 3 — Determining weights for target queries

Previous steps

= source query ¢; allocated weight w;

= source query ¢; mapped to a set 7; of k > 1 target queries

Weight transfer

= if k=1, directly assign w; to the single target query
= if £ > 1, w; is distributed across the k identified target queries
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Step 3 — Determining weights for target queries

Previous steps

= source query ¢; allocated weight w;

= source query ¢; mapped to a set 7; of k > 1 target queries

Weight transfer

= if k=1, directly assign w; to the single target query
= if £ > 1, w; is distributed across the k identified target queries

Weighting schemes

= uniform: w} = w;/k
9,
= based on ©;;, j € {2,...,k}: w; _ _Wi%ij
O,
4 €T:
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Experiments — Transfer tasks

Source location: United States (US)

Target locations
= France (FR): from English to French
= Spain (ES): from English to Spanish

= Australia (AU): from English to English, different hemisphere,
greater temporal difference in flu outbreaks
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Experiments — Transfer tasks

Source location: United States (US)

Target locations
= France (FR): from English to French
= Spain (ES): from English to Spanish
= Australia (AU): from English to English, different hemisphere,
greater temporal difference in flu outbreaks

Why choose locations where syndromic surveillance systems exist?

= more robust evaluation at this preliminary stage

Zou, Lampos, Cox. Transfer learning for unsupervised flu models from online search. WWW '19. 16/29


https://dx.doi.org/10.1145/3308558.3313477

Experiments — Data

Search query frequencies from Google

= retrieved from the Google Correlate endpoint

= z-scored (by default)

= weekly rates

= September 2007 to August 2016 (both inclusive)

= # queries: 34,121 (US), 29,996 (FR), 15,673 (ES), 8,764 (AU)
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Experiments — Data

Search query frequencies from Google

= retrieved from the Google Correlate endpoint

= z-scored (by default)

= weekly rates

= September 2007 to August 2016 (both inclusive)

= # queries: 34,121 (US), 29,996 (FR), 15,673 (ES), 8,764 (AU)

Influenza-like illness (ILI) rates

= data from health organisations in these countries
(CDC, SN, SISSS, ASPREN)

= same date range, weekly ILI rates

= z-scored as the metric systems vary in these countries
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iments — ILI rates in the source vs. target coun

How similar are they?

us

ILI rates (z-scored)

2008 2009 2010 2011 2012 2013 2014 2015 2016
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Experiments — ILI rates in the source vs. target country

How similar are they?

US vs. FR
5 ; —us
| [ -~ FR
=4 ] f ; i
° Iy | I 1"
o b I I 0 YE]
S 31 i f I "
o] I ! |1 1"
@ \ 1 ! * \ 1
N L] 4 ! p | | "
~ 2 I | : i % IS i #
] i ! | 1l * m I"I' |
- M } 1|1 11 It ! u W 3!
€1 i ! i il M F ! i f
} I i
o v Al ?I \ : f / *(
= 5L ! dr ) ! i ! ’
0 4 " h s ¢ A p
A = o e
N g “J . v
1 1 1 1 1 1 1 1 1
2008 2009 2010 2011 2012 2013 2014 2015 2016
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Experiments — ILI rates in the source vs. target country

How similar are they?

US vs. ES
5 ! —us
| i .
_ar i # ES
I | Pk
g3 i 1 f . ! i
@ . } B I 7 i i i
N | F ol | |
~ 2r | rl | I k | 1\
i+ ! it ! I\ K
4 fl ! ! 14 1[' | ¢ 1T I
B 4L t ! ! I it} i B! !
£ i ' ’r l by } '] 1l |
o * A P B | f I
o gt A k P o v | ;) '
N A v Sl 5 e v
- I ¥ I I I I I I I
2008 2009 2010 2011 2012 2013 2014 2015 2016
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Experiments — ILI rates in the source vs. target country

How similar are they?

US vs. AU
5 157 —UuUs
! —

ar i AU
= i
o i I I
o 31 i 1
Q I [N 1
: b
N I I
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Experiments — Evaluation

Protocol

train a model using 5 flu seasons, test it on the next

evaluate performance on the the last 4 flu seasons of our data set
O¢: use a window of £ = £6 weeks

source query — k = {1,...,5} target queries

Pearson correlation, mean absolute error (MAE), root mean
squared error (RMSE)
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Experiments — Evaluation

Protocol
= train a model using 5 flu seasons, test it on the next
= evaluate performance on the the last 4 flu seasons of our data set
= O.: use a window of & = +6 weeks
= source query — k = {1,...,5} target queries

= Pearson correlation, mean absolute error (MAE), root mean
squared error (RMSE)

Baseline models
= worst case baseline (R): random shuffling of identified query pairs
= unsupervised learning (U) using most semantically relevant queries
= best case threshold (S): supervised learning using elastic net

= transfer component analysis (TCA)!

“Pan et al. (2009)
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Expe nts — General observations

In general:

= semantic similarity (©g) is performing better than temporal similarity
(©¢) when used in isolation

= using semantic or temporal similarity in isolation provides inferior
performance, i.e. hybrid similarity works best

= values for £ > 1 did not help the hybrid similarity to improve

= when k > 1, the non-uniform way of weighting was performing better
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Experiments — General observations

In general:

= semantic similarity (©g) is performing better than temporal similarity
(©¢) when used in isolation

= using semantic or temporal similarity in isolation provides inferior
performance, i.e. hybrid similarity works best

= values for £ > 1 did not help the hybrid similarity to improve

= when k > 1, the non-uniform way of weighting was performing better

Closer look at results for v = 0, v = 1 and the best choice of ~

[@ =705+ (1 =)0, v € [0, 1]]
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Experiments — Results for France

(0=76.+ (1-7)0, v € [0,1])

0.8

0.6

0.4

0.2
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Avg. correlation

0.956 | | 0.959
0.835
Yy=0 y=1 y=.5
R: 0.911
U: 0.916
S: 0.984

65

52

39

26

Avg. MAE
105
84
46.79
63
34.05
22
21
0
=1 y=5
R: 87.729
U: NA
S: 25.088

Avg. RMSE

100.06

65.37
52.15
Y=0 y=1 y=35
R: 101.845
U: NA
S: 42.349
21/29
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Experiments — Results for France

——SN (FR)
-~ TL y=0

/ -~

{ ——SN (FR)
- TL y=1

0
3 600
¢
— 400
=

200

0 |
——SN (FR)
- TL, vy=105

2014 2015
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Experiments — Results for Spain

(0 =70+ (1-7)0, 7 € [0,1])

Avg. correlation Avg. MAE Avg. RMSE
1 35
0.944 0.918
08 |o0.827 28
0.6 21
0.4 14
0.2 7
0 0
Yy=0 y=1 y=.2 Yy=0 y=1 y=.2 Yy=0 y=1 y=.2
R: 0.872 R: 40.311 R: 47.204
U: 0.925 U: NA U: NA
S: 0.971 S:22.120 S: 30.600
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Experiments — Results for Spain

——SISSS (ES)
- TL y=0

——SISSS (ES)

ILI rates

——SISSS (ES)
- TL,v=0.2

\
\

*
4
ra
fv»# o a¥- %~&UL

2015 2016
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Experiments — Results for Australia

(0 =70+ (1-7)0, 7 € [0,1])

Avg. correlation Avg. MAE Avg. RMSE
1 45 60
0.915| [0.921
0.8 36 48
0.7
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Experiments — Results for Australia
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Experiments — Results for different values of ~
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Experiments — Results for different values of ~
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per target country

optimal v depends on the
characteristics of the input
space

1(Oc)/u(BOs) across queries
relates to optimal v: 1.143
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identifying optimal ~
automatically is an open task

~ = 0.5 provides better results
than non hybrid similarities
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Expe nts — Where do some of the errors come from?

Error analysis setup

= investigate the models for the optimal gammas

= compute the mean ILI estimate impact (%) during the 10 weeks
with highest MAE across all test periods per target country

= identify the worst-5 query pairings
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Experiments — Where do some of the errors come from?

Error analysis setup

= investigate the models for the optimal gammas

= compute the mean ILI estimate impact (%) during the 10 weeks
with highest MAE across all test periods per target country

= identify the worst-5 query pairings

France — from English (US) to French

e 24 hour flu — grippe intestinale (13.24%)
e influenza a treatment — grippe traitement (8.07%)
e remedies for colds — rhume de cerveau (6.75%)
e child temperature — température du corps (6.37%)
e child fever — fievre adulte (6.04%)
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Experiments — Where do some of the errors come from?

Error analysis setup

= investigate the models for the optimal gammas

= compute the mean ILI estimate impact (%) during the 10 weeks
with highest MAE across all test periods per target country

= identify the worst-5 query pairings

Spain — from English (US) to Spanish

e mucinez for kids — tratmiento de la grippe (20.76%)
e child fever — sinusitis (7.76%)
e influenza a treatment — con gripe (7.02%)
e symptoms pneumonia — bronquitis (6.04%)
e child temperature — temperatura corporal (5.62%)

Zou, Lampos, Cox. Transfer learning for unsupervised flu models from online search. WWW '19. 28/29


https://dx.doi.org/10.1145/3308558.3313477

Experiments — Where do some of the errors come from?

Error analysis setup

= investigate the models for the optimal gammas

= compute the mean ILI estimate impact (%) during the 10 weeks
with highest MAE across all test periods per target country

= identify the worst-5 query pairings

Australia — from English (US) to English (AU)

e 24 hour flu — flu duration (11.51%)
e child temperature — warmer (9.77%)
e how to treat a fever — have a fever (6.94%

)
e tamiflu and breastfeeding — flu while pregnant (6.81%)
e robitussin cf — colds (5.18%)
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Conclusions and future work

Summary of outcomes

= previous efforts were heavily based on supervised learning models

= transfer learning method to enable modelling in areas that lack an
established syndromic surveillance system
— unsupervised (no ground truth data at the target location)
— core operation: how to map source to target queries

= satisfactory performance (e.g. r > .92)

= 21.6% increase in RMSE compared to a fully supervised model
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Conclusions and future work

Summary of outcomes

= previous efforts were heavily based on supervised learning models

= transfer learning method to enable modelling in areas that lack an
established syndromic surveillance system
— unsupervised (no ground truth data at the target location)
— core operation: how to map source to target queries

= satisfactory performance (e.g. r > .92)

= 21.6% increase in RMSE compared to a fully supervised model

Future work

= study where target location is a low or middle income country
— harder to evaluate; qualitative analysis by experts

= investigate parameters 7 (similarity balance) and k (number of
target queries in a mapping) further and learn them from the data
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