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Structure	of	the	talk

1. Introductory	remarks	

2. Collective	inference	tasks	from	user-generated	content 
—	Nowcasting	flu	rates	from	Twitter	/	Google  
—	Modelling	voting	intention	(bilinear	text	regression)	

3. Personalised	inference	tasks	using	social	media	 
—	Occupation,	income,	socioeconomic	status	&	impact	

4. Concluding	remarks



Context	and	motivation
+ the	Internet,	the	World	Wide	Web	and	connectivity	

+ numerous	successful	web	products	feeding	from	
user	activity	

+ lots	of	user-generated	content	&	activity	logs,	e.g.	
social	media	and	search	engine	query	logs	

+ large	volumes	of	digitised	data	(‘Big	Data’),	birth	of	
Data	Science	(nothing	new	in	principal)

How	can	we	use	online	data	to	improve	our	society,		
interpret	human	behaviour,	and		

enhance	our	understanding	about	our	world?
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User-generated	content:	Ongoing	applications

+ Health	
> disease	surveillance,	intervention	impact	

+ Finance	&	Commerce	
> financial	indices	
> consumer	satisfaction,	market	share	

+ Politics	
> estimation	of	voting	intentions	
> public	opinion	barometers	

+ Social	and	behavioural	sciences	
> complement	questionnaire	based	studies	
> approach	answers	to	unresolved	questions



Added	value	of	user-generated	content	for	health

+ Online	content	can	potentially	access	a	larger	and	more	
representative	part	of	the	population 
Note:	Traditional	health	surveillance	schemes	are	based	
on	the	subset	of	people	that	actively	seek	medical	
attention	

+ More	timely	information	(almost	instant)	about	a	
disease	outbreak	in	a	population	

+ Geographical	regions	with	less	established	health	
monitoring	systems	can	greatly	benefit	

+ Small	cost	when	data	access	and	expertise	are	in	place



Collective	inference	tasks	 
from	user-generated	content

Lampos	&	Cristianini,	2012;	
Lampos,	Preotiuc-Pietro	&	Cohn,	2013;	
Lampos,	Miller,	Crossan	&	Stefansen,	2015

http://www.lampos.net/publications/tracking-flu-pandemic-social-web
http://www.lampos.net/publications/bilinear-text-regression
http://www.nature.com/articles/srep12760


Flu	rates	from	Twitter:	The	task

Flu	surveillance		
disease	rates	from	
a	health	agency
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Flu	rates	from	Twitter:	Lasso	for	feature	selection
Regression basics — Lasso
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≠≠≠ no closed form solution — quadratic programming problem
+++ Least Angle Regression explores entire reg. path (Efron et al., 2004)
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w

w, interpretability, better performance (Hastie et al., 2009)

≠≠≠ if m > n, at most n variables can be selected
≠≠≠ strongly corr. predictors æ model-inconsistent (Zhao & Yu, 2009)
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Regression basics — Ordinary Least Squares (1/2)
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also	known	as	lasso	or	L1-norm	regularisation

(Tibshirani,	1996)



Flu	rates	from	Twitter:	Bootstrap	lasso
			Lasso	may	not	always	select	the	true	model  
			due	to	collinearities	in	the	feature	space	

Bootstrapping	lasso	(‘bolasso’)	for	feature	selection	

+ For	a	number	(N)	of	bootstraps,	i.e.	iterations	
> Sample	the	feature	space	with	replacement	(Xi)	
> Learn	a	new	model	(wi)	by	applying	lasso	on	Xi	and	y	
> Remember	the	n-grams	with	nonzero	weights	

+ Select	the	n-grams	with	nonzero	weights	in	p%	of	the	N	
bootstraps	

+ p	can	be	optimised;	if	p<100%,	then	‘soft	bolasso’

(Zhao	&	Yu,	2006)

(Bach,	2008)



Flu	rates	from	Twitter:	Performance

Nowcasting Events from the Social Web with Statistical Learning 72:19

Fig. 8. Feature Class H – Inference for Flu case study (Round 1 of 5-fold cross validation).

Fig. 9. Flu inference results for continuous training, validating and testing sets for South England – Testing
is performed on data from the 19th of September to the 19th October, 2009.

Fig. 10. Comparing smoothness of ground truth between the two case studies.

(which includes 67 rainy out of 155 days in total for all 5 locations), 1-gram ‘flood’
has the exact same average frequency during rainy and non rainy days; furthermore,
the average frequency of stem ‘rain’ in days with no rain was equal to 68% of the one
in rainy days. Similar statistics are also observed in the training set or for 2-grams;
for instance, the average frequencies of ‘rain hard’ and ‘pour rain’ in the training set
(716/1515 rainy days) for nonrainy days are equal to 42% and 13% of the ones in rainy
days respectively.

The proposed method is able to overcome those tendencies by selecting features with
a more stable behavior to the extent possible. However, the figures in the two previous
Sections make clear that inferences have a higher correlation with the ground truth in
the flu case study; even when deploying a randomly permuted version of the dataset,
which in turn encapsulates only one major flu period, and therefore is of worse quality
compared to the rainfall data. Based on those experimental results and the properties
of the target events that reach several extremes, we argue that the proposed method
is applicable to other events as well, which are at least drawn from an exponential
distribution.

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 72, Publication date: September 2012.
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Flu	rates	from	Twitter:	Selected	features

Word	cloud	with	selected	n-grams.	Font	size	is	
proportional	to	the	regression’s	weight;	n-grams	
that	are	upside-down	have	a	negative	weight.



Rainfall	rates	from	Twitter:	Generalisation

Nowcasting Events from the Social Web with Statistical Learning 72:13

Fig. 3. Feature Class B – Inference for Rainfall case study (Round 5 of 6-fold cross validation).

Fig. 4. Feature Class H – Inference for Rainfall case study (Round 5 of 6-fold cross validation).

6. NOWCASTING FLU RATES FROM TWITTER
In the second case study, we use the content of Twitter to infer regional flu rates in the
UK. We base our inferences in three UK regions, namely, Central England and Wales,
North England and South England. Ground truth, that is, official flu rate measure-
ments, is derived from HPA. HPA’s weekly reports are based on information collected
from the Royal College of General Practitioners (RCGP) and express the number of GP
consultations per 100,000 citizens, where the result of the diagnosis was ILI. According

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 4, Article 72, Publication date: September 2012.



Rainfall	rates	from	Twitter:	Selected	features

Word	cloud	with	selected	n-grams.	Font	size	is	
proportional	to	the	regression’s	weight;	n-grams	
that	are	upside-down	have	a	negative	weight.



Bilinear	regression
Bilinear Text Regression — The general idea (2/2)
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Bilinear	regularised	regressionBilinear Text Regression — The general idea (2/2)
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Bilinear Text Regression — Regularisation
• users p œ Z+
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(Lampos et al., 2013)
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(Lampos,	Preotiuc-Pietro	&	Cohn,	2013)



Bilinear	elastic	net	(BEN):	training	a	modelBilinear Elastic Net (BEN)
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Figure 2 : Objective function
value and RMSE (on hold-out
data) through the model’s
iterations

• Bi-convexity: fix u

u

u, learn w

w

w and vv
• Iterating through convex

optimisation tasks: convergence
(Al-Khayyal & Falk, 1983; Horst & Tuy, 1996)

• FISTA (Beck & Teboulle, 2009)
in SPAMS (Mairal et al., 2010):
Large-scale optimisation solver,
quick convergence
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Global	objective	function	
during	training	(red)	

Corresponding	prediction	
error	on	held	out	data	(blue)

Biconvex	problem		
+fix	u,	learn	w	and	vice	versa	
+ iterate	through	convex 
optimisation	tasks

Bilinear Elastic Net (BEN)
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BEN’s	objective	function

(Mairal	et	al.,	2010)
Large-scale	solvers	in	SPAMS



Bilinear	multi-task	learningBilinear Multi-Task Learning
• tasks · œ Z+
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Bilinear Multi-Task Learning
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Bilinear	Group	l2,1	(BGL)

Bilinear Group ¸2,1¸2,1¸2,1 (BGL) (2/2)
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• a feature (user/word) is selected for all tasks (not just one), but
possibly with di�erent weights

• especially useful in the domain of politics (e.g. user pro party A,
against party B)
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+ a	feature	(user	or	word)	is	usually	selected	(activated)	for	
all	tasks,	but	with	different	weights	

+ useful	in	the	domain	of	political	preference	inference

Bilinear Group ¸2,1¸2,1¸2,1 (BGL) (1/2)
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(Argyriou	et	al.,	2008)



Inferring	voting	intention	from	Twitter:	Data

United	Kingdom	
+ 3	parties	(Conservatives,	Labour,	Lib	Dem)	
+ 42,000	Twitter	users	distributed	proportionally	to	

UK’s	regional	population	figures	
+ 60	million	tweets	&	80,976	1-grams	extracted	
+ 240	polls	from	30	Apr.	2010	to	13	Feb.	2012

Austria	
+ 4	parties	(SPO,	OVP,	FPO,	GRU)	
+ 1,100	politically	active	Twitter	users	selected	by	political	

scientists		
+ 800,000	tweets	&	22,917	1-grams	extracted	
+ 98	polls	from	25	Jan.	to	25	Dec.	2012



Inferring	voting	intention	from	Twitter:	Performance
Ro

ot
	M

ea
n	
 

Sq
ua

re
d	
Er

ro
r

0

1

2

2

3

UK Austria

1.4391.478
1.6991.573 1.442

3.067

1.47
1.723 1.851

1.69

Mean	poll Last	poll Elastic	Net	(words)
BEN BGL

(Lampos,	Preotiuc-Pietro	&	Cohn,	2013)



Inferring	voting	intention	from	Twitter:	UK
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Inferring	voting	intention	from	Twitter:	Austria
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Inferring	voting	intention	from	Twitter:	Qualitative	outcomes

Party Tweet Score User	type

SPÖ	
centre

Inflation	rate	in	Austria	slightly	down	in	July	
from	2.2	to	2.1%.	Accommodation,	Water,	

Energy	more	expensive.
0.745 Journalist

ÖVP	
centre	
right

Can	really	recommend	the	book	“Res	
Publica”	by	Johannes	#Voggenhuber!	Food	
for	thought	and	so	on	#Europe	#Democracy

-2.323 User

FPÖ 
far	right

Campaign	of	the	Viennese	SPO	on	“Living	
together”	plays	right	into	the	hands	of	
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Nonlinearities	in	the	data	(1)

Figure S3. Pairwise relationship of query frequency and ILI rates with (right) and without (left) logit transformation; the
query used to draw these plots is ‘dry cough’. Axes have been normalized from 0 to 1.

Figure S4. Nonlinearities present in the relationship between ILI and two example queries selected by the Elastic Net with
(right) and without (left) the logit transformation. Axes have been normalized from 0 to 1. A: ‘sex linked traits’. B: ‘sore throat
remedies’.
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Nonlinearities	in	the	data	(2)

Figure S3. Pairwise relationship of query frequency and ILI rates with (right) and without (left) logit transformation; the
query used to draw these plots is ‘dry cough’. Axes have been normalized from 0 to 1.

Figure S4. Nonlinearities present in the relationship between ILI and two example queries selected by the Elastic Net with
(right) and without (left) the logit transformation. Axes have been normalized from 0 to 1. A: ‘sex linked traits’. B: ‘sore throat
remedies’.
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Gaussian	Processes	(GPs)

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

C
w

=

P
x2c NPMI(w, x)

|c|� 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs xxx 2 Rd:

f(x

x

x) ⇠ GP(m(x
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x), k(x
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)) , (3)

where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx0), this is:
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(xxx) , P(y = 1|xxx) = �(f(x

x

x))

in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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Based	on	d-dimensional	input	data

we	want	to	learn	a	function

Formally:	Sets	of	random	variables	any	finite	number	
of	which	have	a	multivariate	Gaussian	distribution

mean	function	
drawn	on	inputs

covariance	function	(or	kernel)	
drawn	on	pairs	of	inputs

(Rasmussen	&	Williams,	2006)



Common	covariance	functions	(kernels)

2 Expressing Structure with Kernels

functions are likely under the GP prior, which in turn determines the generalization
properties of the model.

1.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 1.1.

Kernel name: Squared-exp (SE) Periodic (Per) Linear (Lin)
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Figure 1.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a di�erent set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly di�erent assumptions
about the smoothness of the function being modeled.

Kernel parameters Each kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of
being parameters which specify a function directly. An example would be the lengthscale

(Duvenaud,	2014)



Combining	kernels	in	a	GP

4 Expressing Structure with Kernels

Lin ◊ Lin SE ◊ Per Lin ◊ SE Lin ◊ Per

0 0

0
0

x (with x

Õ = 1) x ≠ x

Õ
x (with x

Õ = 1) x (with x

Õ = 1)
¿ ¿ ¿ ¿

quadratic functions locally periodic increasing variation growing amplitude

Figure 1.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 1.1.

1.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 1.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple
parametric form. Here, we discuss a few examples:

• Polynomial Regression. By multiplying together T linear kernels, we obtain a
prior on polynomials of degree T . The first column of figure 1.2 shows a quadratic
kernel.

• Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per◊SE corresponds to locally
periodic structure, as shown in the second column of figure 1.2.

• Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter c. The third and fourth columns
of figure 1.2 show two examples.

it	is	possible	to	add	or	multiply	kernels	
(among	other	operations)

(Duvenaud,	2014)



GPs	for	regression:	A	toy	example	(1)
take	some	(x,y)	pairs	with	some	obvious	

nonlinear	underlying	structure
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More	information	about	GPs
+ Book	—	“Gaussian	Processes	for	Machine	Learning”  

http://www.gaussianprocess.org/gpml/	

+ Tutorial	—	“Gaussian	Processes	for	Natural	Language	
Processing”  
http://people.eng.unimelb.edu.au/tcohn/tutorial.html	

+ Video-lecture	—	“Gaussian	Process	Basics”  
http://videolectures.net/gpip06_mackay_gpb/	

+ Software	I	—	GPML	for	Octave	or	MATLAB 
http://www.gaussianprocess.org/gpml/code	

+ Software	II	—	GPy	for	Python 
http://sheffieldml.github.io/GPy/

http://www.gaussianprocess.org/gpml/
http://people.eng.unimelb.edu.au/tcohn/tutorial.html
http://videolectures.net/gpip06_mackay_gpb/
http://www.gaussianprocess.org/gpml/code
http://sheffieldml.github.io/GPy/


Google	Flu	Trends:	The	idea

Can	we	turn	search	query	information	(statistics)	to	
estimates	about	the	rate	of	influenza-like	illness		

in	the	real-world	population?



Google	Flu	Trends:	Failure
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Algorithm Dynamics
All empirical research stands on a founda-
tion of measurement. Is the instrumentation 
actually capturing the theoretical construct of 
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum, 
it is quite likely that GFT was an unstable 
refl ection of the prevalence of the fl u because 
of algorithm dynamics affecting Google’s 
search algorithm. Algorithm dynamics are 
the changes made by engineers to improve 
the commercial service and by consum-
ers in using that service. Several changes in 
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most 
common explanation for GFT’s error is a 
media-stoked panic last fl u season ( 1,  15). 
Although this may have been a factor, it can-
not explain why GFT has been missing high 
by wide margins for more than 2 years. The 
2009 version of GFT has weathered other 
media panics related to the fl u, including the 
2005–2006 influenza A/H5N1 (“bird flu”) 
outbreak and the 2009 A/H1N1 (“swine fl u”) 
pandemic. A more likely culprit is changes 
made by Google’s search algorithm itself.

The Google search algorithm is not a 
static entity—the company is constantly 
testing and improving search. For example, 
the offi cial Google search blog reported 86 
changes in June and July 2012 alone (SM). 
Search patterns are the result of thousands of 
decisions made by the company’s program-
mers in various subunits and by millions of 
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never 
documented the 45 search terms used, and 
the examples that have been released appear 
misleading ( 14) (SM). Google does provide 
a service, Google Correlate, which allows 
the user to identify search data that correlate 
with a given time series; however, it is lim-
ited to national level data, whereas GFT was 
developed using correlations at the regional 
level ( 13). The service also fails to return any 
of the sample search terms reported in GFT-
related publications ( 13,  14).

Nonetheless, using Google Correlate to 
compare correlated search terms for the GFT 
time series to those returned by the CDC’s 
data revealed some interesting differences. In 
particular, searches for treatments for the fl u 
and searches for information on differentiat-
ing the cold from the fl u track closely with 
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data 
(and thus user utilization) has been modi-

fi ed by the service provider in accordance 
with their business model. Google reported 
in June 2011 that it had modifi ed its search 
results to provide suggested additional search 
terms and reported again in February 2012 
that it was now returning potential diagnoses 
for searches including physical symptoms 
like “fever” and “cough” ( 21,  22). The for-
mer recommends searching for treatments 
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase 
in some searches to distinguish the fl u from 
the common cold. We document several other 
changes that may have affected GFT (SM).

In improving its service to customers, 
Google is also changing the data-generating 
process. Modifications to the search algo-
rithm are presumably implemented so as to 
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more 
advertising revenue. Recommended searches, 
usually based on what others have searched, 
will increase the relative magnitude of certain 
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely 
affect GFT’s estimates. Oddly, GFT bakes in 
an assumption that relative search volume for 
certain terms is statically related to external 

events, but search behavior is not just exog-
enously determined, it is also endogenously 
cultivated by the service provider.

Blue team issues are not limited to 
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and 
whether studies conducted even a year ago 
on data collected from these platforms can 
be replicated in later or earlier periods is an 
open question.

Although it does not appear to be an issue 
in GFT, scholars should also be aware of the 
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur 
when research subjects (in this case Web 
searchers) attempt to manipulate the data-
generating process to meet their own goals, 
such as economic or political gain. Twitter 
polling is a clear example of these tactics. 
Campaigns and companies, aware that news 
media are monitoring Twitter, have used 
numerous tactics to make sure their candidate 
or product is trending ( 23,  24).

Similar use has been made of Twitter 
and Facebook to spread rumors about stock 
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of 
information, the more tempting it will be to 
manipulate those signals.
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GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the 
actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly 
high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 
52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates, 
lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC 
estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone. 
Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 
for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.

The	estimates	of	the	online	Google	Flu	Trends	tool	were	
approx.	two	times	larger	than	the	ones	from	the	CDC	in	2012/13

(Lazer	et	al.,	2014)

Detecting influenza epidemics using search engine query data 2

Traditional surveillance systems, including those employed by 
the U.S. Centers for Disease Control and Prevention (CDC) and 
the European Influenza Surveillance Scheme (EISS), rely on 
both virologic and clinical data, including influenza-like illness 
(ILI) physician visits. CDC publishes national and regional data 
from these surveillance systems on a weekly basis, typically 
with a 1-2 week reporting lag.

In an attempt to provide faster detection, innovative 
surveillance systems have been created to monitor indirect 
signals of influenza activity, such as call volume to telephone 
triage advice lines5 and over-the-counter drug sales6. About 
90 million American adults are believed to search online for 
information about specific diseases or medical problems each 
year7, making web search queries a uniquely valuable source 
of information about health trends. Previous attempts at using 
online activity for influenza surveillance have counted search 
queries submitted to a Swedish medical website8, visitors to 
certain pages on a U.S. health website9, and user clicks on a 
search keyword advertisement in Canada10. A set of Yahoo 
search queries containing the words “flu” or “influenza” were 
found to correlate with virologic and mortality surveillance 
data over multiple years11.

Our proposed system builds on these earlier works by utilizing 
an automated method of discovering influenza-related search 
queries. By processing hundreds of billions of individual 
searches from five years of Google web search logs, our 
system generates more comprehensive models for use in 
influenza surveillance, with regional and state-level estimates 
of influenza-like illness (ILI) activity in the United States. 
Widespread global usage of online search engines may enable 
models to eventually be developed in international settings.

By aggregating historical logs of online web search queries 
submitted between 2003 and 2008, we computed time series 
of weekly counts for 50 million of the most common search 
queries in the United States. Separate aggregate weekly 
counts were kept for every query in each state. No information 
about the identity of any user was retained. Each time series 
was normalized by dividing the count for each query in a 
particular week by the total number of online search queries 
submitted in that location during the week, resulting in a query 
fraction (Supplementary Figure 1).

We sought to develop a simple model which estimates the 
probability that a random physician visit in a particular region 
is related to an influenza-like illness (ILI); this is equivalent 
to the percentage of ILI-related physician visits. A single 
explanatory variable was used: the probability that a random 
search query submitted from the same region is ILI-related, as 
determined by an automated method described below. We fit 
a linear model using the log-odds of an ILI physician visit and 
the log-odds of an ILI-related search query:

logit(P) = β0 + β1 × logit(Q) + ε

where P is the percentage of ILI physician visits, Q is 
the ILI-related query fraction, β0 is the intercept, 

β1 is the multiplicative coefficient, and ε is the error term. 
logit(P) is the natural log of P/(1-P).

Publicly available historical data from the CDC’s U.S. Influenza 
Sentinel Provider Surveillance Network12 was used to help 
build our models. For each of the nine surveillance regions of 
the United States, CDC reported the average percentage of 
all outpatient visits to sentinel providers that were ILI-related 
on a weekly basis. No data were provided for weeks outside 
of the annual influenza season, and we excluded such dates 
from model fitting, though our model was used to generate 
unvalidated ILI estimates for these weeks.

We designed an automated method of selecting ILI-related 
search queries, requiring no prior knowledge about influenza. 
We measured how effectively our model would fit the CDC 
ILI data in each region if we used only a single query as the 
explanatory variable Q. Each of the 50 million candidate 
queries in our database was separately tested in this manner, 
to identify the search queries which could most accurately 
model the CDC ILI visit percentage in each region. Our 
approach rewarded queries which exhibited regional variations 
similar to the regional variations in CDC ILI data: the chance 
that a random search query can fit the ILI percentage in all 
nine regions is considerably less than the chance that a 
random search query can fit a single location (Supplementary 
Figure 2).

The automated query selection process produced a list of the 
highest scoring search queries, sorted by mean Z-transformed 
correlation across the nine regions. To decide which queries 
would be included in the ILI-related query fraction Q, we 
considered different sets of N top scoring queries. We 
measured the performance of these models based on the 
sum of the queries in each set, and picked N such that we 
obtained the best fit against out-of-sample ILI data across the 
nine regions (Figure 1).

Combining the N=45 highest-scoring queries was found to 
obtain the best fit. These 45 search queries, though selected 

Figure 1: An evaluation of how many top-scoring queries to include in the 
ILI-related query fraction. Maximal performance at estimating out-of-sample 
points during cross-validation was obtained by summing the top 45 search 
queries. A steep drop in model performance occurs after adding query 81, 
which is “oscar nominations”. 
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Google	Flu	Trends:	Hypotheses	for	failure
+ ‘Big	Data’	are	not	always	good	enough;	may	not	always	

capture	the	target	signal	properly	
+ The	estimates	were	based	on	a	rather	simplistic	model	
+ The	model	was	OK,	but	some	spurious	search	queries	

invalidated	the	ILI	inferences,	e.g.	‘flu	symptoms’	
+ Media	hype	about	the	topic	of	‘flu’	significantly	increased	

the	search	query	volume	from	people	that	were	just	
seeking	information	(non	patients)	

+ Side	note:	CDC’s	estimates	are	not	necessarily	the	ground	
truth;	they	can	also	go	wrong	sometimes,	although	we	
generally	assume	that	they	are	a	good	representation	of	
the	real	signal



Google	Flu	Trends	revised:	Data	(1)

Google	search	query	logs	
> geo-located	in	US	regions	
> from	4	Jan.	2004	to	28	Dec.	2013	(521	weeks,	~decade)	
> filtered	by	a	very	relaxed	health-topic	classifier	
> intersection	among	frequently	occurring	search	

queries	in	all	US	regions	
> weekly	frequencies	of	49,708	queries	(#	of	features)	
> all	data	have	been	anonymised	and	aggregated	

plus	corresponding	ILI	rates	from	the	CDC



Google	Flu	Trends	revised:	Data	(2)

Corresponding	ILI	rates	from	the	CDC

Number of clusters r MAE⇥102 MAPE (%)

1 .91 .273 12.3
2 .92 .266 12.2
4 .93 .243 11.4
6 .92 .246 11.6
8 .94 .236 11.7
10 .95 .221 10.8
12 .94 .234 11.2

Table S3. Cumulative performance (2008-2013) of GP model with various numbers of clusters.

Covariance function r MAE⇥102 MAPE (%)

SE .95 .221 10.8
Matérn .95 .228 11

Table S4. Performance comparison of the optimal GP model (10 clusters) when a different covariance function (Matérn) is
used.

Figure S1. CDC ILI rates for the US covering 2004 to 2013, i.e., the time span of the data used in our experimental process.
Flu periods are distinguished by color.

Figure S2. Comparison of query-only predictions for all investigated models during the flu season 2008-09 (omitted from
main text for space reasons).

5/10

different	colouring	per	flu	season



Google	Flu	Trends	revised:	Methods	(1)

r>a Elastic	Net

Google	search	query	
frequencies	(Q)

Historical	CDC		
ILI	data

k-means

k1

k2

k3

kN

…

+ GP(μ,k)
Q’≤Q Q’’≤Q’

ILI	inference

(Lampos,	Miller,	Crossan	&	Stefansen,	2015)



Google	Flu	Trends	revised:	Methods	(2)

1. Keep	search	queries	with	r	≥	0.5	(reduces	the	amount	
of	irrelevant	queries)	

2. Apply	the	previous	model	(GFT)	to	get	a	baseline	
performance	estimate	

3. Apply	elastic	net	to	select	a	subset	of	search	queries	
and	compute	another	baseline	

4. Group	the	selected	queries	into	N	=	10	clusters	using	 
k-means	to	account	for	their	different	semantics	

5. Use	a	different	GP	covariance	function	on	top	of	each	
query	cluster	to	explore	non-linearities



Google	Flu	Trends	revised:	Methods	(3)
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where λ1, λ2 are the regularization parameters (see SI, Parameter learning in the Elastic Net). Compared 
to Lasso, Elastic Net often selects a broader set of relevant queries24.

Exploring nonlinearities with Gaussian Processes. The majority of methods for modeling infec-
tious diseases via user-generated content are based on linear methods10,13,14 ignoring the presence of 
possible nonlinearities in the data (see Supplementary Fig. S4). Recent findings in natural language pro-
cessing applications suggest that nonlinear frameworks, such as the Gaussian Processes (GPs), can 
improve predictive performance, especially in cases where the feature space is moderately-sized28,29. GPs 
are sets of random variables, any finite number of which have a multivariate Gaussian distribution30. In 
GP regression, for the inputs x, ′ ∈ �x Q (both expressing rows of the query matrix X) we want to learn 
a function →� �f : Q  that is drawn from a GP prior, f (x) ∼ GP (µ(x), k (x, x′ )), where µ(x) and k(x, 
x′ ) denote the mean and covariance (or kernel) functions respectively. Our models assume that µ(x) =  0 
and use the Squared Exponential (SE) covariance function, defined by

σ′
′

( , ) =
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⎝
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−

− ⎞

⎠

⎟⎟⎟⎟⎟
,
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k x x

x x
exp

2 3
SE

2 2
2

2

where A is known as the length-scale parameter and σ2 is a scaling constant that represents the overall 
variance. Note that A is inversely proportional to the relevancy of the feature space. Different kernels have 
been applied, such as the the Matérn31, but did not yield any performance improvements (see 
Supplementary Table S4). In the GP framework, predictions are conducted through 

( ) ( )∫, = , ( )⁎ ⁎ ⁎ ⁎X Xy y f fx xP P Pf
, where y* is the target variable, X the set observations used for 

training, and x* the current observation. Parameter learning is performed by minimizing the negative 
log-marginal likelihood of ( )XyPr , where y denotes the ILI rates used for training.

The proposed GP model is applied on the queries previously selected by the Elastic Net. However, 
instead of modeling each query separately or all queries as a whole, we first cluster queries into groups 
based on a similarity metric and then apply a composite GP kernel on clusters of queries. Given a par-
tition of the search queries = , …,x c c{ }C1 , where ci denotes the subset of queries clustered in group i, 
we define the GP covariance function to be
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where C denotes the number of clusters, kSE has a different set of hyperparameters (σ, A) per group, and 
the second term of the equation models noise (δ being a Kronecker delta function). We extract a clus-
tered representation of queries by applying the k-means+ +  algorithm32,33 (see SI, Gaussian Process train-
ing details). The distance metric of k-means uses the cosine similarity between time series of queries to 
account for the different magnitudes of the query frequencies in our data34. It is defined by 
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 denotes a column of the input matrix X.

By focusing on sets of queries, the proposed method can protect an inferred model from radical 
changes in the frequency of single queries that are not representative of an entire cluster. For example, 
media hype about a disease may trigger queries expressing a general concern rather than a self-infection. 
These queries are expected to utilize a small subset of specific key-phrases, but not the entirety of a 
cluster related to flu infection. In addition, assuming that query clusters may convey different thematic 
‘concepts’, related to flu, other health topics or even expressing seasonal patterns, our learning algorithm 
will be able to model the contribution of each of these concepts to the final prediction. From a statistical 
point of view, GP regression with an additive covariance function can be viewed as learning a sum of 
lower-dimensional functions, = + … +f f f C1 , one for each cluster. As these functions have signifi-
cantly smaller input space ( < Qci , for ∈ , …,i C{1 }), the learning task becomes much easier, requiring 
fewer samples and giving us more statistical traction. However, this imposes the assumption that the 
relationship between queries in separate clusters provides no information about ILI, which we believe is 
reasonable.

Denoting all ILI observations as = ( , …, )y yy T1 , our GP regression objective is defined by the min-
imization of the following negative log-marginal likelihood function

µ µ(( − ) ( − ) + ( )),
( )σ σ σ,…, , ,…, ,

−

A A

Тy K y Kargmin log
5

1

C C1 1 n

where K is the matrix of covariance function evaluations at all pairs of inputs, (K)i,j =  k(xi, xj), and µ is 
similarly defined as µ µ µ= ( ( ), …, ( ))x xT1 . Given features from a new week, x*, predictions are con-
ducted by computing the mean value of the posterior predictive distribution, E[y*|y, X, x*], and predictive 
uncertainty is estimated by the posterior predictive variance, V[y*|y, X, x*]30.

+ protect	a	model	from	radical	changes	in	the	frequency	of	
single	queries	that	are	not	representative	of	a	cluster	

+ model	the	contribution	of	various	thematic	concepts	
(captured	by	different	clusters)	to	the	final	prediction	

+ learning	a	sum	of	lower-dimensional	functions:	significantly	
smaller	input	space,	much	easier	learning	task,	fewer	
samples	required,	more	statistical	traction	obtained	

- imposes	the	assumption	that	the	relationship	between	
queries	in	separate	clusters	provides	no	information	about	
ILI	(reasonable	trade-off)
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and actual ILI rates (Supplementary Fig. S2 shows the results for 2008–09). Further details, such as the 
number of selected or nonzero weighted queries per case and model are shown in Supplementary Table 
S2. Evidently, the GP model outperforms both GFT and Elastic Net models. Using an aggregation of all 
inferences and the MAPE loss function, we see that Elastic Net yields an absolute performance improve-
ment of 8.5% (relative improvement of 41.7%) in comparison to GFT. The GP model in comparison to 
Elastic Net improves predictions further by 1.1% (relative improvement of 9.2%). We also observe that 
both Elastic Net and GP models cannot capture the ILI rate during the peak of the flu season for 2009–
10, whereas the GFT model over-predicts it. This could be a consequence of the the fact that 2009–10 
was a unique flu period, as it is the only set of points expressing a pandemic in our data (H1N1 swine 
flu pandemic).

By measuring the influence of individual queries or clusters in each nowcast, we conduct a qualitative 
evaluation of the models, aiming to interpret some prediction errors. Our influence metric computes the 
contribution of a query or a cluster of queries by comparing a normal prediction outcome with an output 
had this query or cluster been absent from the input data (see SI, Estimation of query and cluster influ-
ence in nowcasts). The GFT model is very unstable across the different flu seasons, sometimes exhibiting 
the smallest error (season 2009–10), and other times severely mispredicting ILI rates (seasons 2008–09, 
2010–11 and 2011–12). Through an examination of a 21-week period (04/12/2011 to 28/04/2012), where 
major over-predictions occur (see Fig.  1C), and the estimation of the percentage of influence for each 
query in the weekly predictions, we deduced that queries unrelated to influenza were responsible for 
major portions of the final prediction. The query ‘rsv’ (where RSV stands for Respiratory Syncytial Virus) 
accounts on average for 24.5% of the signal, overtaking the only clearly flu-related query with a signif-
icant representation (‘flu symptoms’ expressing 17.5% of the signal); the top five most influential que-
ries also include ‘benzonatate’ (6.2%), ‘symptoms of pneumonia’ (6%) and ‘upper respiratory infection’ 
(3.9%), all of which are either not related to or may have an ambiguous contribution to ILI. Hence, the 
predictions were primarily influenced by content related to other types of diseases or generic concern, 
something that resulted in an over-prediction of ILI rates. For the same 21-week period, we performed 
a similar analysis on the features from the significantly better performing Elastic Net model. Firstly, the 
influence of each query is less concentrated, something expected given the increased number of nonzero 
weighted queries forming up the model (316 queries in Elastic Net vs. 66 in GFT). The features with 
the largest contribution were ‘ear thermometer’ (3.1%), ‘musinex’ (2.4%)—a misspelling of the ‘mucinex’ 
medicine, ‘how to break a fever’ (2.2%), ‘flu like symptoms’ (2.1%) and ‘fever reducer’ (2%), all of which 
may have direct or indirect connections to ILI. Note that none of the top five GFT features received a 
nonzero weight by Elastic Net, hinting that the latter model provided a probably better feature selection 
in this specific case.

Figure 1. Graphical comparison between ILI nowcasts based on query-only models and the ILI rates 
published by CDC. (A–D): Flu seasons 2009–10, 2010–11, 2011–12 and 2012–13 respectively.
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‘rsv’	—	25%	
‘flu	symptoms’	—	18%	
‘benzonatate’	—		6%	

‘symptoms	of	pneumonia’	—		6%	
‘upper	respiratory	infection’	—		4%

impact	of	automatically	selected	queries	in	
a	flu	estimate	during	the	over-predictions

previous	GFT	model
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Modeling temporal characteristics. Autoregressive (AR) models can be used to define a more 
direct relationship between previously available ILI values and the current one. AR modeling has been 
found to improve GFT’s20,35,36 as well as the performance of Twitter-based systems37 in ILI prediction 
and forecasting. Due to the clear temporal correlation in the predictive errors of the query only models 
(see Supplementary Fig. S6), we augment our previously established query-only methods with an AR 
portion to gain predictive power. We do this by incorporating our prediction results into an ARMAX 
model, a variant of the Auto-Regressive Moving Average (ARMA) framework38 that generalizes simple 
AR models.

An ARMAX(p, q) model is often used to explain future occurrences as a function of past values, 
observed contemporaneous inputs, and unobserved randomness. It is composed of three parts, the AR 
component (p), the moving average component (q), and a regression element. At a time instance t, given 
the sequential observations , …,y yT1 , and a D-dimensional exogenous input ht, an ARMAX(p, q) model 
specifies the relationship

∑ ∑ ∑φ θ ε ε= + + + ,
( )=

−
=

−
=

,y y w h
6t

i
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i t i
i

q

i t i
i
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i t i t
1 1 1

where the φi, θi, and wi are coefficients to be learned and εt is mean zero Gaussian noise with some 
unknown variance. For fixed values of p and q, this model is trained using maximum likelihood. We 
extend this model with a seasonal component that incorporates yearly lags (see SI, Seasonal ARMAX 
model) and determine orders p and q as well as seasonal orders automatically by applying a step-wise 
procedure39. Instead of using all available query fractions as the exogenous input, ht, we only incorporate 
the single prediction result (D =  1) from a query model, ŷt. Essentially, this allows the query-only model 
to distill all of the information that search data have to offer about the ILI rate at time t, before using 
this meta-information in the ARMAX procedure. Predictive intervals are estimated for each autoregres-
sive nowcast through the maximum likelihood variance of the model.

Results
We evaluate our methodology on held out ILI rates and normalized query frequencies from five consec-
utive periods matching the influenza seasons from 2008 to 2013, as defined by CDC (see SI, Materials 
and Supplementary Fig. S1). For each test period (flu season i), we train a model using all previous data 
points (dating back to January, 2004, i.e., from the first flu season in our data to season i −  1); this holds 
for the ARMAX models as well with the only difference that training starts from season 2008–09 (to 
include out-of-sample ILI rate inferences in the AR training process). We only maintain search queries 
that exhibit a Pearson correlation of ≥ .5 with the ILI rates in the training data. In this way, we reduce 
the possibility of learning models that overfit by incorporating unrelated queries, and also eliminate neg-
atively correlated content under the assumption that for our specific task anti-correlation is often due to 
seasonal patterns (e.g., queries seeking treatment for snake bites) rather than causal links. We note that 
in order to establish a consistent comparison, the GFT estimates in the paper have been re-computed 
based on the query data set used in our experiments as well as our evaluation scenario; therefore, there 
might exist differences compared to the GFT web platform’s outputs. The GP model uses a fixed number 
of k =  10 clusters (see Supplementary Table S3 for experiments with different cluster sizes). Performance 
is measured by using the following metrics between inferred and target ILI values: Pearson correlation 
r (which is not always indicative of the magnitude of error), Mean Absolute Error (MAE) and Mean 
Absolute Percentage of Error (MAPE) (defined in SI, Performance metrics).

Query-only models. Table  1 enumerates the performance results for the three query-only models 
(GFT, Elastic Net and GP) and Fig.  1 presents the respective graphical comparison between predicted 

GFT Elastic Net GP

Period Weeks r MAE × 102 MAPE(%) r MAE × 102 MAPE(%) r MAE × 102 MAPE(%)

2008–09 48 0.66 0.490 30.8 0.94 0.180 10.6 0.94 0.175 10.6

2009–10 57 0.97 0.324 14.4 0.99 0.499 15.1 0.99 0.451 14.6

2010–11 52 0.97 0.390 18.0 0.99 0.168 11.3 0.99 0.130 9.5

2011–12 52 0.92 0.550 33.1 0.94 0.131 9.8 0.94 0.129 9.8

2012–13 65 0.96 0.209 9.5 0.98 0.286 12.1 0.99 0.199 9.4

2008–13 274 0.89 0.381 20.4 0.92 0.260 11.9 0.95 0.221 10.8

Table 1.  Performance of all the investigated query-only models in nowcasting ILI rates using Pearson 
correlation (r), MAE, and MAPE between predictions and response data across the five identified flu 
periods.

Seasonal ARMAX model
A seasonality component in the ARMAX function incorporates further information into the model. In all of our experiments,
the length of the season is fixed to 52 weeks (1-year long). The full model description, which extends Eq. 6 in the main paper,
becomes
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where !i and ⌫i are lagged variable parameters of order J and K, respectively. We estimate a series of models using7 and
choose the model that minimizes the Akaike Information Criterion (AIC);8 therefore all the hyper-parameters are automatically
determined. By observing these parameters, the evidence of seasonality in the signal is far less clear in the first prediction
period (when there are fewer samples from previous years) than the evidence in the last prediction period (where there are
examples of many preceding seasons). More precisely, the first few prediction periods do not incorporate a yearly lag, whereas
as the last two tend to incorporate an AR seasonal lag of order 1 and a moving average seasonal lag of order 1.

Furthermore, the estimation procedure includes a search over integrated components, augmenting the ARMAX to the
autoregressive integrated moving average regression (ARIMA). The integrated part of the model refers to an initial differencing
step aimed at removing non-stationarities present in the time series. As more evidence of stationarity is presented in later
prediction periods, the inference procedure settles on no integrated effect, as seen in the outputs listed in Fig. S8 and S9.

Query text preprocessing
To assess whether standard text preprocessing can improve the prediction performance, we preprocessed the original data and
created the following outputs:

1. n-grams: We n-grammed queries extracting 1- to 4-grams (an n-gram is a set of n words or text tokens). We maintained
the n-grams with > 5 daily average occurrences. This resulted in a set of 79,872 n-grams.

2. Preprocessed queries: We removed a set of 536 common English stop-words from each query, stemmed (using Porter’s
algorithm9) the 1-grams in the queries when they were two or more characters long, removed 1-grams that were one
character long, and finally deduplicated the remaining queries (queries that ended up being the same were merged into
one variable). This preprocessing reduced the number of queries to 42,708 (7,000 fewer than the original data set).

The performance of Elastic Net under these two preprocessed data sets is enumerated in Table S1. We conclude that when
Elastic Net is applied on the raw (non preprocessed) data, it performs better on average.

Estimation of query and cluster influence in nowcasts
For the linear methods (GFT and Elastic Net), we apply the following approach to distill the influence of single queries in a
prediction:

• A query qi is removed from the feature space.

• Nowcasts for ILI are computed (excluding qi).

• The absolute relative difference (%) between the nowcasts with and without qi is measured.

• By normalizing this percentage across all queries (so that for each query-nowcast pair it is from 0 to 1), and then averaging
(per query) for a period of N weeks, we extract the average influence of that query in the nowcasts during these N weeks.

It is hard to investigate single query influence in the GP model. However, taking advantage of the additive decomposition of
the kernels (each applied on a different cluster), we can measure the influence of each cluster. In the GP model, a nowcast is
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nowcasts against the baseline AR and the ground truth ILI rates, when a 2-week lag is assumed. Apart 
from the significant prediction accuracy that the AR +  GP model provides, we also observe that the 
incorporation of query information dramatically reduces the uncertainty of the predictions under all 
testing periods. Figure 3 draws an additional comparison, where the query-only model (GP) is plotted 
against its AR version. Interestingly, for the testing period 2009–10, it becomes evident that the AR +  GP 
model is now capturing the peak of the flu season. Furthermore, the prediction intervals become tighter, 
especially when ILI rates are high (see Fig. 3D). It is important, however, to note that the uncertainty in 
the query-only prediction is not propagated through to prediction; the AR +  GP procedure sees the GP 
regression as a form of data preprocessing.

We found that predictive errors in query-only models display auto-correlated structure that can be 
exploited for improved prediction (see Supplementary Fig. S6). The contribution of the ARMAX frame-
work is that it can directly model this, effectively resetting the mean value of the prediction to a more 
likely location. An examination of the predictive period and the Q—Q plot of normalized logit-space 
errors (see Supplementary Fig. S5), shows a systematic bias in query-only experiments that is mitigated 
by the addition of the AR components. The improvement of the AR +  GP and AR +  Elastic Net models 
over the AR +  GFT can be attributed to the higher query-only correlation with the CDC ILI signal, and 
the AR component’s ability to incorporate information about the natural autocorrelation in the signal.

A more fine-grained analysis of the predictions, when they really matter, i.e., during the peaking 
moments of a flu season, provides additional support for the improvements brought by the new query 
modeling methodology. Including weeks that belong to the .85 quantile of the seasonal CDC ILI rates 
(7 to 10 weeks per season), we measure the nowcasting performance of all the investigated models; the 
results are enumerated in Table 3. There, we observe that the GP model exhibits a similar MAPE to its 
general average performance, whereas the other models are much more error prone. For example, in 
the query-only results, Elastic Net’s cumulative MAPE during peak flu periods increases to 15.8% (from 
11.9% overall), whereas GP’s error rate remains at the same levels (11% from 10.8%).

Discussion
We have presented an extensive analysis on the task of nowcasting CDC ILI rates based on queries 
submitted to an Internet search engine. Previously proposed (GFT) or well established (Elastic Net) 
methods have been rigorously assessed, and a new nonlinear approach driven by GPs has been proposed. 
In addition, query-only models were complemented by autoregressive components, merging traditional 

Figure 2. Comparison of nowcasts between an autoregressive baseline model which is based only on 
ILI data (AR) and the AR + GP model. In both occasions the lag is set to 2 weeks and the corresponding 
uncertainty intervals are highlighted. (A–D): Flu seasons 2009–10, 2010–11, 2011–12 and 2012–13 
respectively.



Google	Flu	Trends	revised:	Results	(5)
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Personalised	inference	tasks	
using	social	media	content

Lampos,	Aletras,	Preotiuc-Pietro	&	Cohn,	2014;	
Preotiuc-Pietro,	Lampos	&	Aletras,	2015;	
Preotiuc-Pietro,	Volkova,	Lampos,	Bachrach	&	Aletras,	2015;	
Lampos,	Aletras,	Geyti,	Zou	&	Cox,	2015

http://www.lampos.net/publications/twitter-user-impact
http://www.lampos.net/publications/bilinear-text-regression
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138717
http://www.lampos.net/publications/socioeconomic-status-twitter


Occupational	class	inference:	Motivation

+ Validate	this	hypothesis	on	a	broader,	larger	data	set	
using	social	media	(Twitter)	

+ Downstream	applications	
> research	(social	science	&	other	domains)	
> commercial	

+ Proxy	for	additional	user	attributes,	e.g.	income	and	
socioeconomic	status

(Bernstein,	1960;	Labov,	1972/2006)

(Preotiuc-Pietro,	Lampos	&	Aletras,	2015)

“Socioeconomic	variables	are	influencing	language	use.”



Occupational	class	inference:	SOC	2010

C1	—	Managers,	Directors	&	Senior	Officials	
e.g.	chief	executive,	bank	manager	

C2	—	Professional	Occupations	(e.g.	mechanical	engineer,	pediatrist)	
C3	—	Associate	Professional	&	Technical	

e.g.	system	administrator,	dispensing	optician	
C4	—	Administrative	&	Secretarial	(e.g.	legal	clerk,	secretary)	
C5	—	Skilled	Trades	(e.g.	electrical	fitter,	tailor)	
C6	—	Caring,	Leisure,	Other	Service	

e.g.	nursery	assistant,	hairdresser	
C7	—	Sales	&	Customer	Service	(e.g.	sales	assistant,	telephonist)	
C8	—	Process,	Plant	and	Machine	Operatives	

e.g.	factory	worker,	van	driver	
C9	—	Elementary	(e.g.	shelf	stacker,	bartender)

Standard	Occupational	Classification	(SOC)



Occupational	class	inference:	Data
+ 5,191	Twitter	users	mapped	to	their	occupations,	then	

mapped	to	one	of	the	9	SOC	categories	
+ 10	million	tweets	
+ Download	the	data	set

%	of	users	per	SOC	category
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http://www.lampos.net/sites/default/files/data/jobs.tar.gz


Occupational	class	inference:	Features
User	attributes	(18)	
+ number	of	followers,	friends,	listings,	follower/friend	
ratio,	favourites,	tweets,	retweets,	hashtags,	@-mentions,	
@-replies,	links	and	so	on	

Topics	—	Word	clusters	(200)	
+ SVD	on	the	graph	laplacian	of	the	word	x	word	similarity	
matrix	using	normalised	PMI,	i.e.	a	form	of	spectral	
clustering	

+ Skip-gram	model	with	negative	sampling	to	learn	word	
embeddings	(Word2Vec);	pairwise	cosine	similarity	on	the	
embeddings	to	derive	a	word	x	word	similarity	matrix;	
then	spectral	clustering	on	the	similarity	matrix

(Bouma,	2009;	von	Luxburg,	2007)

(Mikolov	et	al.,	2013)



Occupational	class	inference:	Performance
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Occupational	class	inference:	Topic	CDFs	(1)
Feature Analysis - Cumulative Density Functions
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Occupational	class	inference:	Topic	CDFs	(2)
Feature Analysis - Cumulative Density Functions
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Occupational	class	inference:	Topic	CDFs	(3)
Feature Analysis - Cumulative Density Functions
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Occupational	class	inference:	Topic	similarity

that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every

Occupational	class
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Occupational	class	inference:	Topic	similarity

that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Occupational	class	inference:	Topic	similarity

that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Income	inference:	Data

Income prediction
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We approach the task as regression.

+ 5,191	Twitter	users	(same	as	in	the	previous	study)	
mapped	to	their	occupations,	then	mapped	to	an	
average	income	in	GBP	(£)	using	the	SOC	taxonomy	

+ approx.	11	million	tweets	
+ Download	the	data	set

(Preotiuc-Pietro,	Volkova,	
Lampos,	Bachrach	&	

Aletras,	2015)

https://figshare.com/articles/Twitter_User_Income_Dataset/1515997


Income	inference:	Features
+ Profile	(8)  

e.g.	#followers,	#followees,	times	listed	etc.	
+ Shallow	textual	features	(10)  

e.g.	proportion	of	hashtags,	@-replies,	@-mentions	etc.	
+ Inferred	(perceived)	psycho-demographic	features	(15)  

e.g.	gender,	age,	education	level,	religion,	life	
satisfaction,	excitement,	anxiety	etc.	

+ Emotions	(9)  
e.g.	positive	/	negative	sentiment,	joy,	anger,	fear,	
disgust,	sadness,	surprise	etc.	

+ Word	clusters	—	Topics	of	discussion	(200)  
based	on	word	embeddings	and	by	applying	spectral	
clustering



Income	inference:	Performance
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Income	inference:	Qualitative	analysis	(1)

e1: positive (l=46.27) e2: neutral (l=57.64) e3: negative(l=76.34)

e4: joy (l=36.37) e5: sadness (l=67.05) e6: disgust (l=116.66)

e7: anger (l=95.50) e8: surprise (l=83.61) e9: fear (l=31.74)
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Income	inference:	Qualitative	analysis	(2)
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Inferring	the	socioeconomic	status:	Task

Profile	description	
on	Twitter	

Occupation SOC	category1 NS-SEC2

1. Standard	Occupational	Classification:	369	job	groupings	
2. National	Statistics	Socio-Economic	Classification:	Map	from	

the	job	groupings	in	SOC	to	a	socioeconomic	status,	i.e.	
{upper,	middle	or	lower}



Inferring	the	socioeconomic	status:	Data	&	Features

+ 1,342	Twitter	user	profiles 
distinct	data	set	from	the	previous	works	

+ 2	million	tweets	
+ Date	interval:	Feb.	1,	2014	to	March	21,	2015	
+ Each	user	has	a	socioeconomic	status	(SES)	label: 

{upper,	middle,	lower}	
+ Download	the	data	set	

1,291	features	representing		
user	behaviour	(4),	biographical	/	profile	information	

(523),	text	in	the	tweets	(560),	topics	of	discussion	(200),	
and	impact	on	the	platform	(4)

https://figshare.com/articles/Socioeconomic_status_classification_of_social_media_users/1619703


Inferring	the	socioeconomic	status:	Results

T1 T2 P

O1 584 115 83.5%

O2 126 517 80.4%

R 82.3% 81.8% 82.0%

T1 T2 T3 P

O1 606 84 53 81.6%

O2 49 186 45 66.4%

O3 55 48 216 67.7%

R 854% 58.5% 68.8% 75.1%

Classification Accuracy	(%) Precision	(%) Recall	(%) F1

2-way 82.05	(2.4) 82.2	(2.4) 81.97	(2.6) .821	(.03)

3-way 75.09	(3.3) 72.04	(4.4) 70.76	(5.7) .714	(.05)

Confusion	matrices	for	the	3-	and	2-way	classification

Classification	performance	(using	a	GP	classifier)



Characterising	user	impact:	Task	&	Data

Impact  distribution  for  users  with
high  (H)  values  of  this  feature  as  
opposed  to  low  (L).  Red  line  is  the

mean  impact  score.
Tweet  a  lot  about
Showbiz  and  Politics,
with  (L)  or  without  
(NL)  using  <URL>’s

*  bubble  size  inverse  proportional  to  learned  GP  ARD  kernel
lengthscales  and  represent  predicitve  relevance;;  colours  split
between  the  types  of  features;;  nuances  of  the  same  colour
are  only  for  visual  effect

Topics  computed  over  reference  Twitter  corpus
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ν				Nikolaos	Aletras	~	@nikaletras	

40K	Twitter	accounts	(UK)	considered

http://www.twitter.com/lampos
http://www.twitter.com/nikaletras


Characterising	user	impact:	Topic	entropy

Figure 3: User impact distribution (x-axis: impact points, y-axis: # of user accounts) for accounts with a
high participation in the 10 most relevant topics. Dot-dashed lines denote mean impact scores; the red line
is the mean of the entire sample (= 6.776).
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Figure 4: User impact distribution for accounts with
high (blue) and low (dark grey) topic entropy. Lines
denote the respective mean impact scores.

scores. Hence, in Figure 3 we only show the user
impact distribution for the 500 accounts with the
top participation in each topic. Informally, this is a
way to quantify the contribution of each domain or
topic of discussion in the impact score. Notice that
the topics which ‘push’ users towards the highest
impact scores fall into the domains of ‘Politics’ (⌧3)
and ‘Showbiz’ (⌧4). An equally interesting observa-
tion is that engaging a lot about a specific topic will
more likely result to a higher than average impact;
the only exception is ⌧8 which does not deviate
from the mean, but ⌧8 rather represents the use of a
non-English language (Indonesian) and therefore,
does not form an actual topic of discussion.

To further understand how participation in the
10 most relevant topics relates to impact, we also
computed the joint user-topic entropy defined by

H(ui, ⌧) = �
MX

j=1

P(ui, ⌧j)⇥ log2 P(ui, ⌧j), (9)

where ui is a user and M = 10 (Shannon, 2001).
This is a measure of user pseudo-informativeness,
meaning that users with high entropy are consid-
ered as more informative (without assessing the
quality of the information). Figure 4 shows the im-
pact score distributions for the 500 accounts with
the lowest and highest entropy. Low and high en-
tropies are separated, with the former being placed
clearly below the mean user impact score and the
latter above. This pictorial assessment suggests that
a connection between informativeness and impact
may exist, at least in their extremes (their correla-
tion in the entire sample is r = .35, p < .001).

Use case scenarios. Most of the previous analysis
focused on the properties of single features. How-
ever, the user impact prediction models we learn
depend on feature combinations. For that reason,
it is of interest to investigate use case scenarios
that bring various attributes together. To reduce
notation in this paragraph, we use x

+
i (x is ei-

ther a non-textual attribute a or a topic ⌧ ) to ex-
press xi > µ(xi), the set of users for which the
value of feature xi is above the mean; equivalently
x

�
i : xi < µ(xi). We also use ⌧

⇤
A to express the

more complex set {⌧+
A \ ⌧

�
j \ ... \ ⌧

�
z }, an inter-

section of users that are active in one topic (⌧A),
but not very active in the rest. Figure 5 depicts the
user impact distributions for five use case scenarios.
Scenario A compares interactive to non interac-
tive users, represented by P(a

+
1 , a

+
6 , a

+
7 , a

+
8 ) and

P(a

+
1 , a

�
6 , a

�
7 , a

�
8 ) respectively; interactivity, de-

fined by an intersection of accounts that tweet regu-
larly, do many @-mentions and @-replies, but also
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On	average,	the	higher	the	user	impact	score,	
the	higher	the	topic	entropy



Characterising	user	impact:	Use	case	scenarios

Impact	distribution	under	user	behaviour	scenarios
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Figure 5: User impact distribution (x-axis: impact points, y-axis: # of user accounts) for five Twitter
use scenarios based on subsets of the most relevant attributes and topics – IA: Interactive, IAC: Clique
Interactive, L: Using many links, TO: Topic-Overall, TF: Topic-Focused, LT: ‘Light’ topics, ST: ‘Serious’
topics. (N) denotes negation and lines the respective mean impact scores.

mention many different users, seems to be rewarded
on average with higher impact scores. Interactive
users gain more impact than clique-interactive ac-
counts represented by P(a

+
1 , a

+
6 , a

�
7 , a

+
8 ), i.e. users

who interact, but do not mention many differ-
ent accounts, possibly because they are conduct-
ing discussions with a specific circle only (sce-
nario B). The use of links when writing about
the most prevalent topics (‘Politics’ and ‘Show-
biz’) appears to be an important impact-wise fac-
tor (scenario C); the compared probability distri-
butions in that case were P

�
a

+
1 , (⌧

+
3 [ ⌧

+
4 ), a

+
9

�

against P
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�
. Surprisingly, when

links were replaced by hashtags in the previous
distributions, a clear class separation was not
achieved. In scenario D, topic-focused accounts,
i.e. users that write about one topic consistently,
represented by P

�
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⇤
2 [ ⌧

⇤
3 [ ⌧

⇤
4 [ ⌧

⇤
7 [ ⌧

⇤
10)

�
,

have on average slightly worse impact scores when
compared to accounts tweeting about many top-
ics, P(a
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+
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+
4 , ⌧

+
7 , ⌧

+
10). Finally, scenario

E shows thats users engaging about more ‘seri-
ous’ topics, P
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�
4 , ⌧

�
5 , ⌧

�
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7 Related Work

The task of user-impact prediction based on a ma-
chine learning approach that incorporates text fea-
tures is novel, to the best of our knowledge. De-
spite this fact, our work is partly related to research
approaches for quantifying and analysing user in-
fluence in online social networks. For example,
Cha et al. (2010) compared followers, retweets
and @-mentions received as measures of influ-
ence. Bakshy et al. (2011) aggregated all posts by
each user, computed an individual-level influence
and then tried to predict it by modelling user at-
tributes (# of followers, followees, tweets and date
of joining) together with past user influence. Their

method, based on classification and regression trees
(Breiman, 1984), achieved a modest performance
(r = .34). Furthermore, Romero et al. (2011) pro-
posed an algorithm for determining user influence
and passivity based on information-forwarding ac-
tivity, and Luo et al. (2013) exploited user attributes
to predict retweet occurrences. The primary differ-
ence with all the works described above is that we
aim to predict user impact by exploiting features
under the user’s direct control. Hence, our findings
can be used as indirect insights for strategies that in-
dividual users may follow to increase their impact
score. In addition, we incorporate the actual text
posted by the users in the entire modelling process.

8 Conclusions and Future Work

We have introduced the task of user impact pre-
diction on the microblogging platform of Twitter
based on user-controlled textual and non-textual
attributes. Nonlinear methods, in particular Gaus-
sian Processes, were more suitable than linear ap-
proaches for this problem, providing a strong per-
formance (r = .78). That result motivated the anal-
ysis of specific characteristics in the inferred model
to further define and understand the elements that
affect impact. In a nutshell, activity, non clique-
oriented interactivity and engagement on a diverse
set of topics are among the most decisive impact
factors. In future work, we plan to improve various
modelling components and gain a deeper under-
standing of the derived outcomes in collaboration
with domain experts. For more general conclusions,
the consideration of different cultures and media
sources is essential.
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Figure 5: User impact distribution (x-axis: impact points, y-axis: # of user accounts) for five Twitter
use scenarios based on subsets of the most relevant attributes and topics – IA: Interactive, IAC: Clique
Interactive, L: Using many links, TO: Topic-Overall, TF: Topic-Focused, LT: ‘Light’ topics, ST: ‘Serious’
topics. (N) denotes negation and lines the respective mean impact scores.
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Figure 5: User impact distribution (x-axis: impact points, y-axis: # of user accounts) for five Twitter
use scenarios based on subsets of the most relevant attributes and topics – IA: Interactive, IAC: Clique
Interactive, L: Using many links, TO: Topic-Overall, TF: Topic-Focused, LT: ‘Light’ topics, ST: ‘Serious’
topics. (N) denotes negation and lines the respective mean impact scores.
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Concluding	remarks
+ User-generated	content	is	a	valuable	asset	

> improve	health	surveillance	tasks	
> mine	collective	knowledge	
> infer	user	characteristics	
> numerous	other	tasks	

+ Nonlinear	models	tend	to	perform	better	given	the	
multimodality	of	the	feature	space	

+ Deep	representations	of	text	tend	to	improve	
performance	(better	representations)	

+ Qualitative	analysis	is	important	
> Evaluation	
> Interesting	insights



Future	research	challenges
+ Interdisciplinary	research	tasks	require	to	work	closer	
with	domain	experts	

+ Understand	better	the	biases	in	the	online	media	
(demographics,	information	propagation,	external	
influence	etc.)	

+ Attack	more	interesting	(usually	more	complex)	
questions,	attempt	to	generalise	findings,	identify	and	
define	limitations	

+ Conduct	more	rigorous	evaluation	

+ Improve	on	existing	methods  
(‘deeper’	understandings	&	interpretations)	

+ Ethical	concerns
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Thank	you.	
Any	questions?

Slides	can	be	downloaded	from	
lampos.net/talks-posters

http://www.lampos.net/talks-posters
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