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Structure of the lecture

Essentials on public health surveillance
The very basics of linear regression
Using linear regression to develop Google Flu Trends

. More regression basics: regularised regression

Using regularised linear regression to map Twitter data
to estimates about influenza rates

. Further regression basics (incl. a nonlinear approach)

Improving Google Flu Trends

. Assessing the impact of a health intervention using

Internet data

. Recap and concluding remarks



1. Essentials on public health surveillance



Public health surveillance

. is the continuous, systematic collection, analysis and
interpretation of health-related data needed for the planning,
implementation, and evaluation of public health practice.

It can:

+ serve as an early warning system for impending public
health emergencies

+ document the impact of an intervention, or track
progress towards specified goals

+ monitor and clarify the epidemiology of health problems,
to allow priorities to be set and to inform public health
policy and strategies

http://www.who.int/topics/public health surveillance/en/


http://www.who.int/topics/public_health_surveillance/en/

Examples of public health surveillance

Syndromic surveillance

using health data preceding a solid diagnosis to signal a potential outbreak
e.g. visits to general practitioners, hospitals, emergency call systems,
school absenteeism, over-the-counter drug sales

Laboratory-based surveillance
laboratory-confirmed cases (laboratory testing and diagnosis)

Organisations
Centers for Disease Control and Prevention (CDC) in the US
European Centre for Disease Prevention and Control (ECDC) in the EU
Public Health England (PHE)
Staten Serum Institut (SSI) in Denmark

http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Limitations of traditional health surveillance

+ Derivations are based on the subset of people that

actively seek medical attention

non-adults or the elderly are responsible for the majority of doctor visits
or hospital admissions

thus, these methods may not always be able to capture a disease
outbreak emerging in the actual population

+ Infrastructure is required

i.e. a health surveillance system may not be applicable to under-
developed parts of the world

+ Time delays

it may take days to process the records of general practitioners and
hospitals and make an estimate about the rate of a disease



Digital health surveillance

also known as Info-veillance

Syndromic surveillance that utilises the online (web)
contents (Eysenbach, 2006)

Examples of online user-generated content (UGC):
+ search engine query logs

+ social media

+ online fora, specialised email lists (e.g. medical)

> Famous digital health surveillance example:
Google Flu Trends [ Link 2 ]
> Infamous one (and under development): Flu Detector


https://www.google.org/flutrends/about/
https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_#!ctype=l&strail=false&bcs=d&nselm=h&met_y=flu_index&scale_y=lin&ind_y=false&rdim=country&idim=country:US&ifdim=country&hl=en_US&dl=en_US&ind=false
http://fmedia12.cs.ucl.ac.uk/fludetector/index.html?from=2014-02-09&to=2016-02-14&smoothing=0&e=yes&weekly=yes

Advantages of digital health surveillance

+ Online content can potentially access a larger and more
representative part of the population (or at least a
complementary one)

+ More timely information (almost instant) about a disease
outbreak in a population

+ Geographical regions with less established health
monitoring systems can greatly benefit

+ Small cost when data access and expertise are in place



Challenges in digital health surveillance

Online information is noisy and oftentimes inaccurate

Statistical natural language processing is not perfect, i.e.
word sense disambiguation may not always be successtful

Online behaviour and content may respond to other
factors, such as news media coverage

Evaluation of outcomes (e.g. estimated disease rates or
the impact of a health intervention) is hard



2. The very basics of (linear) regression



Broad definitions for regression

Regression
A statistical tool for investigating (and estimating) the
relationship between variables. There is usually one
dependent variable (y), the one we want to estimate,
and one (or more) independent variables (x), also
known as predictors or observations.

y = f(x,w)

Text regression

Regression, where the observed (input) variable is
based on textual information



Regression: An example

y is the target variable
we want to estimate

by looking at the
observed variable x

their relationship looks
like a linear one
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Regression: An example
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Ordinary Least Squares (OLS) regression (1)

observations x; € R™, ic{1,..,n}

responses y; € R, ie{l,..,n}

weights, bias  w;, 5 € R, je{l,...,m}

N

i.e. find the best values that minimise
this function (summation)

n m
argminz Y; — ﬂ — Z L5 W
j=1



Ordinary Least Squares (OLS) regression (2)

observations x; € R™, ic{1,..,n}
responses y; € R, ie{l,..,n}
weights, bias  w;, 5 € R, je{l,...,m}
2 o [ o o
O i or below in matrix form, i.e. using
argmmz Yi — B — Z Ti5W; : :
wp = = vectors and matrices instead of scalars

argmin || X ,w. — y||7,, where X, = [X diag (I)]

W «

S w, = (XIX.) XTy



Regression: How good is an inference? (1)

arget variable: y=y1,...,yn
Estimates: §=y1,...,yn

EONE

t=1

Mean Squared Error: MSE (y
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Regression: How good is an inference? (2)

arget variable: y=y1,...,yn
Estimates: §=y1,...,yn

Pearson (linear) correlation € [-1,1]

- Nl_li<yt—u<y>> (@t—g@))

—~\ oy ()

Note: Pearson correlation is not always indicative of
performance (i.e. it can be occasionally misleading),
but useful nonetheless



3. Using OLS regression to map search
query frequency to an influenza rate
estimate — Google Flu Trends

(Ginsberg et al., 2009)


http://static.googleusercontent.com/media/research.google.com/en//archive/papers/detecting-influenza-epidemics.pdf

Google Flu Trends: the idea (1)

GO g|e medicine for flu

medicine for flu and cough
best medicine for flu

medicine for flu and sore throat
medicine for flu when pregnant
medicine for flu symptoms
medicine for flu in pregnancy

Can we turn search query information (statistics) to
estimates about the rate of influenza-like illness
in the real-world population?



Google Flu Trends: the idea (2)

(o gle medicine for flu U n
medicine for flu and cough
best medicine for flu
medicine for flu and sore throat
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Why is this an interesting task:

1. For all the reasons we mentioned already!
(see the advantages of digital health surveillance)

2. Plus, seasonal influenza epidemics are a major public
health concern, i.e. causing 250,000 to 500,000 deaths
worldwide per year.



Google Flu Trends: the data

Search query logs (anonymised) between 2003 and 2008

Weekly counts of 50 million queries conducted by users
located in the US and its 9 broad regions (formed by
aggregations of member states)

Each query g normalised using the total number of
searches conducted in the same weekly time interval (t)
and location

#searches for g in week ¢

+#searches in week t

Model training and evaluation based on CDC records



Google Flu Trends: the method (1)

logit(P) =B, + B, x logit(Q) + €

Q Aggregate frequency of a set of search queries
P Percentage (probability) of doctor visits

Bo Regression bias term

B; Regression weight (one weight only)

£ independent, zero-centered noise (assumed)



Google Flu Trends: the method (2)

the logit function
logit(a) =log(a/(1 — a))
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logit(y)

Google Flu Trends: the method (2)

the logit function "8
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logit(y)

Google Flu Trends: the method (2)

border values are ‘emphasised’
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Google Flu Trends: the method (3)

A flu rate estimation model is trained on each query (50 million)
separately for the 9 US regions, i.e. 450 million models are trained

The N top performing queries (on average across the 9 regions) are
identified; based on Pearson correlation (r) between inferences and CDC
ILI rates

Starting from the best performing query and adding up one query each
time, a new model is trained and evaluated
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Google Flu Trends: the results (1)

Search query topic Top 45 queries
n Weighted

Influenza complication 11 18.15
Cold/flu remedy 8 5.05
General influenza symptoms 5 2.60
Term for influenza 4 3.74
Specific influenza symptom 4 2.54
Symptoms of an influenza 4 2.21
complication

Antibiotic medication 3 6.23
General influenza remedies 2 0.18
Symptoms of a related disease 2 1.66
Antiviral medication 1 0.39
Related disease 1 6.66
Unrelated to influenza 0 0.00
Total 45 49.40
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Google Flu Trends: the results (2)
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Mean Pearson correlation (r)

for the 9 regions, r = 0.97




4. More regression basics:
Regularised regression



Limitations of least squares regression

observations x; € R™, ic{1,..,n}

responses y; € R, ie{l,..,n}
weights, bias  w;, 5 € R, je{l,...,m}

argmin | X .w. — yl|7,, where X, = [X diag (I)]
W «

- May be singular, thus difficult to invert

- High dimensional models are difficult to interpret

- Unsatisfactory prediction accuracy (estimates
have large variance)




Regularised regression: Ridge

w, = (XTX. +]AI) X7y

non singular

n

2
m m
argmin Z (yZ — B — Z xijwj) +H A Z w?
j=1 J=1

or argmin {HX*’UJ* — ?/H%z T AH‘WH%Q}
W

L

also known as L2-norm regularisation



Pros and Cons of ridge regression

mn

2
argmin Z (yz — 0 — Z xij’wj) + A Z w?
j=1 j=1

w, i—1

or argmin{HX*’w* —yH%Q T )\HwH%z}

W «

+ size constraint on the weight coefficients
(regularisation); resolves problems caused by
collinear variables

+ less degrees of freedom; often better predictive
accuracy than OLS regression

- does not perform feature selection (all coefficients
are nonzero); performance could be improved



Regularised regression: Lasso (1)

observations x; € R™, ic{1,..,n}
responses y; € R, ie{l,..,n}
weights, bias  w;, 5 € R, je{l,...,m}

n m 2 @ m h

argmin Z y; — B — Z Ti;wi | A Z ;|

w,B | =1 j=1 j=1
. J
é )

or argmin {HX*’UJ* — ;yH%2 +

W «

also known as L1-norm regularisation



Pros and Cons of lasso

2
argmin {Z (yz 8= ﬂ?z‘jwj) +A D wj}
j=1 j=1

or argmin {HX*’w* — ZUHEQ + )‘HwHﬁl}
W «

- no closed form solution (quadratic optimisation needed)

+ Least Angle Regression (LARS) algorithm explores the
entire regularisation path, i.e. all values for A

+ w tends to be sparse enhancing both the interpretability
of a model and providing (often) better performance

- if m > n, at most n variables can be selected, i.e. have a
nonzero weight

- collinear predictors (high pair-wise correlation) may lead
to inconsistent models




5. Using lasso regression to map Twitter
data to an influenza rate estimate

(Lampos and Cristianini, 2010)


http://www.lampos.net/publications/tracking-flu-pandemic-social-web

About Twitter (1)

And what about the statistical significance of
the computed statistical significance?
inception_in_ statistics
€ Reply [ Delete Y Favorite RT if you love Justin Bieber. Delete ur
account if you don't.

& Reply T3 Retweet W Favorite

50 1
RETWEETS = FAVORITE

Why do I feel so happy today hihi.
Bedtimeeee, good night. Yey thank You Lord
for everything. Answered prayer ¥

4 Reply T3 Retweet W Favorite

1 think 1 have the flu but 1 still look tabulous

& Reply T3 Retweet W Favorite



About Twitter (2)

And what about the statistical significance of
the computed statistical significance?
#1n

R

Wh
Be
for

1 think 1 have the flu but 1 still look fabulous

4 Reply T Retweet W Favorite



Twitter
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‘Flu Trends’: the data

> 27 million tweets

> from 22/06/200
> geolocatedint

9 to 06/12/2009
ne UK

centred arounc

Health surveillanc
> influenza-like il

54 cities (10 Km radius)

e data
Iness (ILI) rates from the Health

Protection Agency (now Public Health England) and
the Royal College of General Practitioners (RCGP)

> expressing the

per 100,000 citi

UK regions

number of ILI doctor consultations
zens in the population for various



Twitter ‘Flu Trends’: the methods (1)

Is there a signal in the data’

List with 41 handpicked keywords related to flu
e.g. ‘fever’, ‘runny nose’, ‘sore throat’, ‘headache’ etc.

Compute their
aggregate daily
frequency & compare
it to HPA records

r=0.82to 0.86

Flu rate / score (z—scores)

-

—*— Twitter’s Flu—score (region D)
—©— HPA's Flu rate (region D)

4 . . . . .
AV .
A

{1t regionD:

. I .
o Y S (O S o o S .

{1 England & Wale

"""""""""""""""""""""""""""""""""""""""""""

E 60 180 200 220 240 260 280 300 320 340

Day Number (2009)



Twitter ‘Flu Trends’: the methods (2)

Can we improve the obtained correlations by learning a
weight for each keyword using OLS regression? (Yes)

Train/Test A B C D E Avg.
A - 0.8389 09605 0.9539 0.9723 0.9314
B 0.7669 - 0.8913 0.9487 0.8896 0.8741
C 0.8532  0.702 - 0.8887 0.9445 0.8471
D 0.8929 09183  0.9388 - 0.9749  0.9312
E 0.9274 0.8307 0.9204 0.9749 - 0.9134
Total Avg. 0.8915




Twitter ‘Flu Trends’: the methods (3)

What if we made our feature set (keywords) more rich?

Use Wikipedia pages about flu, Patient forums (more
informal language), expert pages (e.g. NHS-based) to
expand our keywords to 1,560 (from 41)

Many related keywords — much more unrelated

Stop word removal, i.e. basic words that bear no

particular meaning are removed, e.g. ‘and’, ‘@’, ‘the’, ‘they

)

Porter stemming is applied to normalise word endings,
e.g. both ‘happy’ and ‘happiness’ are convertec

Lasso regu

of keyworc

to ‘happi’

arised regression to select and weig
s for capturing an ILI rate

Nt subset



Twitter ‘Flu Trends’: the results (1)

Lasso regression on the extended set of keywords
seems to improve average performance (r = 0.9256)

Train/Validate A B C D E
A - 09594 09375 09348 0.9297
B 0.9455 - 09476 09267 0.9003
C 09154 0.9513 - 0.8188 0.908
D 0.9463 09459 0.9424 - 0.9337
E 0.8798 09506 09455 0.8935 :
Total Avg. 0.9256

Train on one region, validate A (regularisation parameter) on

another, test performance on the remaining regions
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Twitter ‘Flu Trends’: the results (2)

Fit looks better than in the previous modelling attempt
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(d) Inference on the aggregated data set for weeks 28 and 41 - Correlation:
97.13% (p-value: 3.96e-44)



Twitter ‘Flu Trends’: the results (3)

keywords that have

by

been selected (non zero weights)
asso regression
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suddenli




6. Further regression basics: Elastic net
and Gaussian Processes in a nutshell



Regularised regression: the elastic net

observations x; € R™, ic{1,..,n}

responses y; € R, ie{l,..,n}

weights, bias  w;, 5 € R, je{l,...,m}

argmin < || X.w. —yl|7, + M w7, + A2 llwe,
OLS RR reg. Lasso reg.

elastic net combines L2-norm (ridge)
and L1-norm (lasso) regularisation



Pros and Cons of elastic net

argmin HX*w* o yH%Q T AlH“’H%Q T )\2”’11]“@1

W —_—— 0 D ~——
OLS RR reg. Lasso reg.

‘compromise’ between ridge regression (handles
collinear predictors) and lasso (favours sparsity)

entire regularisation path can be explored by moditfying
LARS algorithm

if m > n, # of selected variables is not limited to n

it may select redundant variables
has two regularisation parameters to validate (although
there are ways to mitigate this, e.g. by setting A, = aA;)



Nonlinearities in the data (1)

fraction space relationship

LI

frequency of search query
‘dry cough’ (Google)

0.0 0.2 0.4 0.6 0.8 1.0



Nonlinearities in the data (2)

fraction space relationship

1.0- )
¢ nonlinear
0.8- )
o linear
0.6-
; o
0.4 - :
frequency of search query
0.2- ‘ ,
. dry cough’ (Google)
0.0 -




Gaussian Processes (GPs)

Based on d-dimensional inputdata & &< R
we want to learn a function f R4 3 R

f(z) ~ GP(m(z), k(z,z'))

mean function %variance function (or kernel)

drawn on inputs drawn on pairs of inputs




Gaussian Processes (GPs)

Based on d-dimensional inputdata & &< R
we want to learn a function f R4 3 R

f(z) ~ GP(m(z), k(z,z'))

mean function %variance function (or kernel)

drawn on inputs drawn on pairs of inputs

Formally: Sets of random variables any finite number
of which have a multivariate Gaussian distribution

\

N ) = s e {500 w5 x|




Common covariance functions (kernels)

Kernel name: | Squared-exp (SE) Periodic (Per) Linear (Lin)

k(z,2') = | ofexp (—%) 0} exp (—g% sin” (Wf’“’;‘”/)) of(x —c)(z' —c)

Plot of k(x,2'):

r—1 r— 1 r (with 2/ = 1)

! ! !
Functions f(z)
sampled from % NW\/J\ \\

GP prior: VAN —

x x x
Type of structure: local variation repeating structure linear functions




Combining kernels ina GP

it is possible to add or multiply kernels
(among other operations)

Lin X Lin SE X Per Lin X SE Lin X Per
0 0
0 0 - . .
r (with 2’ = 1) r— r (with 2/ = 1) r (with 2/ = 1)
! | ! !

~ AV S

quadratic functions locally periodic increasing variation growing amplitude




GPs for regression: An example (1)

take some (x,y) pairs with some obvious
nonlinear underlying structure

® X,y pairs
i o &
20 °
] . .
s 1S ® ° 8 ¢
S
>
= @
CIg”HO ® o . ® o o o ° o
b ¢ 0o® ) o® _ o e
= | 000% e® 0® oo o %o % o®
5 ¢ ® e ®e
O_I ] . ] ] . ] ] . ]
0 10 20 30 40 50 60

X (predictor variable)



GPs for regression: An example (2)

Addition of 2 GP kernels:
periodic + squared exponential

® X,y pairs—OLS fit—GP fit
20 - . :
° T\ testing N
. . |\ . .
o H training 1\ (solid line)
— . .
2151 ' ® (dashed line) 1 + 1
= ® \\ ¢\
g l | \II \\
[ ! \\ e
%10 B ‘R_\_ o ° .'.#\\_ _/. _.\ .‘. _
S __ a ' _ee.® W I
— ...‘ \... \\ ,0“. o \\ /‘ )
/
S ‘\ / ‘\ # -
\ ’ L
¥ y
| \./
O —1 ] ‘ ] ] ] ] ] =
0 10 20 30 40 50 60

X (predictor variable)



More information about GPs

Book — “Gaussian Processes for Machine Learning”
http://www.gaussianprocess.org/gpml/

Tutorial — “Gaussian Processes for Natural Language
Processing”
http://people.eng.unimelb.edu.au/tcohn/tutorial.html

Video-lecture — “Gaussian Process Basics’’
http://videolectures.net/gpipo6 mackay gpb/

Software | — GPML for Octave or MATLAB
http://www.gaussianprocess.org/gpml/code

Software || — GPy for Python
http://sheffieldml.github.io/GPy/



http://www.gaussianprocess.org/gpml/
http://people.eng.unimelb.edu.au/tcohn/tutorial.html
http://videolectures.net/gpip06_mackay_gpb/
http://www.gaussianprocess.org/gpml/code
http://sheffieldml.github.io/GPy/

7. Improving the Google Flu Trends
modelling approach

(Lampos, Miller, Crossan and Stefansen, 2015)


http://www.nature.com/articles/srep12760

% ILI

Failures of the previous modelling

10— Google Flu Lagged CDC '
Google Flu + CDC CDC /|
8~ . |
It Google estimates more ‘
‘ I \ than double CDC estimates
4 — ‘\ }"!',
. ¥ L\ '-. ..- |
— ; - 7~ IN \
; ‘“ P ) PN |
O I I I I I
07/01/09 07/01/10 07/01/11 07/01/12 07/01/13

The estimates of the online Google Flu Trends tool were

approx. two times larger than the ones from CDC




Hypotheses for failure

‘Big Data’ are not always good enough; may not always
capture the target signal properly

T
T

ne estimates were based on a rather simplistic model

ne model was OK, but some spurious search queries

invalidated the ILI inferences, e.g. “flu symptoms’

Media hype about the topic of “flu’ significantly increased
the search query volume from people that were just
seeking information (non patients)

(Side note: CDC’s estimates are not necessarily the
ground truth; they can also go wrong sometimes,
although we will assume that they are generally a good
representation of the real signal)



Google Flu Trends revised: the data (1)

Google search query logs

>

>

>

geo-located in US regions

from 4.
filtered

an. 2004 to 28 Dec. 2013 (521 weeks, ~decade)

Oy a very relaxed hea

intersection among frequent
queries in all US regions

th-topic classifier

y occurring search

weekly frequencies of 49,708 queries (# of features)

all data have been anonymised and aggregated

plus corresponding ILI rates from the CDC



ILI Rate

Google Flu Trends revised: the data (2)

Corresponding ILI rates from the CDC

different colouring per flu season



Google Flu Trends revised: the methods (1)

Google search query
frequencies (Q)

L] inference

Historical CDC
ILI data



Google Flu Trends revised: the methods (2)

1. Keep search queries with r > 0.5 (reduces the amount
of irrelevant queries)

2. Apply the previous model (GFT) to get a baseline
performance estimate

3. Apply elastic net to select a subset of search queries
and compute another baseline

4. Group the selected queries into N =10 clusters using
k-means to account for their different semantics

5. Use a different GP covariance function on top of each
query cluster to explore non-linearities



Google Flu Trends revised: the methods (3)

+ protect a model from radical changes in the frequency of

Sing

e queries that are not representative of a cluster

+ Mmod

el the contribution of various thematic concepts

(captured by different clusters) to the final prediction
+ learning a sum of lower-dimensional functions: significantly

SIMaAa
Sdim

ler input space, much easier learning task, fewer

dles required, more statistical traction obtained

imposes the assumption that the relationship between

queries in separate clusters provides no information about
ILI (reasonable trade-off)



ILIRate

Google Flu Trends revised: the results (1)
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Google Flu Trends revised: the results (2)

B Google Flu Trends old model [ Elastic Net
™ Gaussian Process

Test data Test data; peaking moments

Mean absolute percentage (%) of error (MAPE) in flu
rate estimates during a 5-year period (2008-2013)



Google Flu Trends revised: the results (3)

impact of automatically selected queries in
a flu estimate during the over-predictions

previous GFT model ‘rsv’ — 25%
‘flu symptoms’ — 18%

‘benzonatate’ — 6%

‘symptoms of pneumonia’— 6%

‘upper respiratory infection’ — 4%



Google Flu Trends revised: the results (4)

impact of automatically selected queries in
a flu estimate during the over-predictions

elastic net ‘ear thermometer’ — 3%
‘musinex’ — 2%

‘how to break a fever’ — 2%

‘flu like symptoms’ — 2%

‘fever reducer’ — 2%



8. Assessing the impact of a health
intervention using Internet data

(Lampos, Yom-Tov, Pebody and Cox, 2015)


http://www.nature.com/articles/srep12760

Intervention impact: the idea

disease rates in the population




Intervention impact: the idea

disease rates in the population

Health intervention
e.g. a vaccination campaign



Intervention impact: the idea

disease rates in the population

impact ?

Health intervention
e.g. a vaccination campaign



Intervention impact: the data

308 million tweets exactly geolocated in England
2 May 2011 to 13 Apr. 2014 (154 weeks)

Query frequencies from Bing, geolocated in England
31 Dec. 2012 to 13 Apr. 2014 (67 weeks)
generally larger numbers from the Twitter data

ILI rates for England obtained from Public Health England
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Intervention impact: the methods (1)

Feature extraction was performed as follows:

+ Start with a manually crafted seed list of 36 textual
markers, e.g. flu, headache, doctor, cough

+ Extract frequent co-occurring n-grams from a corpus of 30
million UK tweets (February & March, 2014) after removing
stop-words

+ Set of markers expanded to 205 n-grams (n < 4)
e.g. #flu, #cough, annoying cough, worst sore throat

+ Relatively small set of features motivated by previous work



Intervention impact: the methods (2)

the produced
n-grams (features)

bolded n-grams
denote the seed
terms

1-grams: #chills, #cough, #disease, #dizzy, #doctor, #fatigue, #fever, #flu, #gp,
#headache, #illness, #infected, #infection, #medicine, #nausea, #shiver, #shivering,
#sneeze, #unwell, #vomit, chills, cough, coughed, coughing, diarrhoea, disease,
dizzy, doctor, fatigue, fatigued, fever, flu, gp, hay-fever, headache, illness, in-
fected, infection, influenza, man-flu, medicine, nausea, shiver, shivering, sneeze,
sneezed, sneezing, thermometer, tonsil, tonsils, unwell, vomit, vomited, vom-
iting

2-grams: annoying cough, awful headache, bad cough, bad headache, banging headache,
bed flu, bed headache, biggest headache, blocked nose, body ache, body aches, chest
infection, chesty cough, cold cough, cold flu, constant headache, cough cough, cough fuck,
cough medicine, cough sneeze, cough sore, cough syrup, cough worse, coughing blood,
coughing guts, coughing lungs, coughing sneezing, day doctor, day headache, disease
nation, doctor cure, doctor experience, doctor today, doctor told, dying flu, ear infection,
eye infection, feel dizzy, feel sick, feel unwell, feeling dizzy, feeling sick, feeling unwell,
fever pitch, flu feel, flu jab, flu tablets, fucking headache, gonna vomit, good doctor, hate
flu, hate unwell, hay fever, headache coming, headache days, headache feel, headache
feeling, headache fuck, headache good, headache hell, headache hours, headache morning,
headache night, headache sleep, headache sore, headache time, headache today, headache
work, headache worse, heart disease, horrible disease, horrible headache, infected restless,
kidney infection, killer headache, love doctor, love sneezing, major headache, man flu,
massive headache, mental illness, muscles ache, new doctor, night coughing, night
fever, people cough, pounding headache, rare disease, rid headache, runny nose, shiver
spine, sick dizzy, sick headache, sleep coughing, sneeze sneeze, sneezing fit, sore throat,
splitting headache, start fever, stomach ache, stuffy nose, stupid cough, swine flu, taste
medicine, terminal illness, throat cough, throat headache, throat infection, tickly cough,
tired headache, viral infection, waiting doctor, waking headache, wanna vomit, watch
doctor, watching doctor, wine headache, woke headache, worst cough, worst headache

3-grams: blocked nose sore, cold flu tablets, cold sore throat, cough cough cough, day
feel sick, eat feel sick, feel sick eating, feel sick feel, feel sick stomach, feel sore throat,
food feel sick, hate feeling sick, headache feel sick, headache sore throat, hungry feel sick,
literally feel sick, nose sore throat, risk heart disease, sleep feel sick, sore throat blocked,
sore throat coming, sore throat cough, throat blocked nose, tired feel sick, today feel
sick, woke sore throat, worlds worst headache, worst sore throat, worst stomach ache

4-grams: blocked nose sore throat, cough cough cough cough




Intervention impact: the methods (3)

First, we come up with an ILI model using (and comparing):

1. Ridge regression
2. Elastic Net
3. A GP model

using a kernel per n-gram category

C
Main kernel function k(x,x) = (Z kRQ (8 g;l)) + kN (X, X)
n=1

| | n o Ix=XI5Y)
Rational Quadratic kernel ~ kRQ(.X) =07 1 + ——75
(infinite sum of squared

exponential kernels)



Intervention impact: the methods (4)

. Disease intervention launched (to a set of areas)
. Define a distinct set of control areas
. Estimate disease rates in all areas

. Identity pairs of areas with strong historical correlation
in their disease rates

. Use this relationship during and slightly after the
intervention to infer diseases rates in the affected areas
had the intervention not taken place



Intervention impact: the methods (5)

T = {f1, .., IN} timeinterval(s) before the intervention
v location(s) where the intervention took place
¢ control location(s)

disease rate(s) in disease rate(s) in
affected location r(q,,q.) control location
before intervention before intervention
high

N
f(w, B) : R — R suchthat argminz (Cléiw + P - qg)z
w,p



Intervention impact: the methods (6)

N
f(w, B) : R — R such that argminz (Cléiw + P — ‘13)2
w.p g

estimate projected rate(s) in affected % x
. . . . q, =q.w+Db
location during/after intervention

disease rate(s) in affected location

o during/after intervention
absolute difference relative difference (impact)
_ qQ, — q,
szqv_q;l; QU: v—>k :



Intervention impact: results (1)

> Vaccination programme for children (4 to 11 years) in pilot
areas of England during the 2013/14 flu season

> Vaccination period (blue): Sept. 2013 to Jan. 2014

> Post-vaccination period (): Feb. to April 2014
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Intervention impact: results (2)

Vaccinated areas

Bury ¢ Cumbria ¢ Gateshead
Leicester e East Leicestershire
Rutland ¢ South-East Essex
Havering (London)

Newham (London)

B Control areas

Brighton e Bristol ¢ Cambridge
Exeter e Leeds ¢ Liverpool
Norwich e Nottingham e Plymouth
Sheffield e Southampton e York




MAE X 103

4.2

3.56

2.92

2.28

1.64

Intervention impact: results (3)

B Ridge Regression [l Elastic Net

Gaussian Process

2.196

1.999

Twitter (Dt1)

Twitter (Dt2)

User-generated data source

1.598

Bing (Dt2)
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Intervention impact: results (4)
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Intervention impact: results (5)
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9. Recap and concluding remarks



What has been presented today

. Essentials on public health surveillance

. Basics on linear, regularised (ridge, lasso, elastic
net) and nonlinear regression using Gaussian
Processes

. Original Google Flu Trends model and why it failed,
plus an improved approach

. From Twitter to flu using regularised regression

. A framework for assessing the impact of a health
intervention using social media and search query

data



A lot of things not presented today

+ There is a growing research interest on digital disease
surveillance (lots of interesting research projects and
papers); we just scratched the surface today!

+ Digging further into methodological details
> Machine Learning [ Statistical aspects
> Natural Language Processing [ Information Retrieval
> Epidemiology

+ Negative results



Things to take away from this lecture

+ User-generated data can be used to assist traditional
health surveillance methods

+ Useful: (a) more information — better decisions, and
(b) under-developed parts of the world may benefit

+ Techniques may not always be straightforward (or
simplistic); they require rigorous evaluation (although
not always possible!)

+ Key elements in this procedure are (a) the better
understanding of natural language, and (b) the
statistical machine learning methods that will capture
and translate this understanding to correct estimates




Research opportunities

+ In our research group at UCL, we focus on user-
generated content analysis

+ Themes of interest are not only health-based, e.g.
applications for inferring characteristics of social
media users, use of social media in other predictive
tasks such as modelling voting intention etc.

+ If you are interested in this or similar research ideas
and want to do a Ph.D., get in touch, funding may
be available (email: v.lampos@ucl.ac.uk)


mailto:v.lampos@ucl.ac.uk?subject=Interested%20in%20doing%20a%20Ph.D.%20at%20UCL
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Thank you.

Slides can be downloaded from
lampos.net/talks-posters


http://www.lampos.net/talks-posters
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