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1. Essentials	on	public	health	surveillance



Public	health	surveillance
…	 is	 the	 continuous,	 systematic	 collection,	 analysis	 and	
interpretation	of	health-related	data	needed	for	the	planning,	
implementation,	and	evaluation	of	public	health	practice.	

It	can:	
+ serve	 as	 an	early	warning	 system	 for	 impending	 public	

health	emergencies	
+ document	 the	 impact	 of	 an	 intervention,	 or	 track	

progress	towards	specified	goals	
+ monitor	and	clarify	the	epidemiology	of	health	problems,	

to	allow	priorities	 to	be	set	and	to	 inform	public	health	
policy	and	strategies

http://www.who.int/topics/public_health_surveillance/en/

http://www.who.int/topics/public_health_surveillance/en/


Examples	of	public	health	surveillance

Syndromic	surveillance	
using	health	data	preceding	a	solid	diagnosis	to	signal	a	potential	outbreak 
e.g.	visits	to	general	practitioners,	hospitals,	emergency	call	systems,	
school	absenteeism,	over-the-counter	drug	sales 
		

Laboratory-based	surveillance	
laboratory-confirmed	cases	(laboratory	testing	and	diagnosis)	

Organisations	
Centers	for	Disease	Control	and	Prevention	(CDC)	in	the	US  
European	Centre	for	Disease	Prevention	and	Control	(ECDC)	in	the	EU 
Public	Health	England	(PHE) 
Staten	Serum	Institut	(SSI)	in	Denmark	

http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


Limitations	of	traditional	health	surveillance

+ Derivations	 are	 based	 on	 the	 subset	 of	 people	 that	
actively	seek	medical	attention	

non-adults	or	the	elderly	are	responsible	for	the	majority	of	doctor	visits	
or	hospital	admissions  
thus,	 these	 methods	 may	 not	 always	 be	 able	 to	 capture	 a	 disease	
outbreak	emerging	in	the	actual	population	

+ Infrastructure	is	required	
i.e.	 a	 health	 surveillance	 system	 may	 not	 be	 applicable	 to	 under-
developed	parts	of	the	world	

+ Time	delays	
it	 may	 take	 days	 to	 process	 the	 records	 of	 general	 practitioners	 and	
hospitals	and	make	an	estimate	about	the	rate	of	a	disease	



Digital	health	surveillance
also	known	as	Info-veillance	

Syndromic	surveillance	that	utilises	the	online	(web)	
contents	(Eysenbach,	2006)	

Examples	of	online	user-generated	content	(UGC):	
+ search	engine	query	logs	
+ social	media	
+ online	fora,	specialised	email	lists	(e.g.	medical)	

> Famous	digital	health	surveillance	example: 
Google	Flu	Trends	[	Link	2	]	

> Infamous	one	(and	under	development):	Flu	Detector

https://www.google.org/flutrends/about/
https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_#!ctype=l&strail=false&bcs=d&nselm=h&met_y=flu_index&scale_y=lin&ind_y=false&rdim=country&idim=country:US&ifdim=country&hl=en_US&dl=en_US&ind=false
http://fmedia12.cs.ucl.ac.uk/fludetector/index.html?from=2014-02-09&to=2016-02-14&smoothing=0&e=yes&weekly=yes


Advantages	of	digital	health	surveillance

+ Online	content	can	potentially	access	a	larger	and	more	
representative	part	of	the	population	(or	at	least	a	
complementary	one)	

+ More	timely	information	(almost	instant)	about	a	disease	
outbreak	in	a	population	

+ Geographical	regions	with	less	established	health	
monitoring	systems	can	greatly	benefit	

+ Small	cost	when	data	access	and	expertise	are	in	place



Challenges	in	digital	health	surveillance

+ Online	information	is	noisy	and	oftentimes	inaccurate	

+ Statistical	natural	language	processing	is	not	perfect,	i.e.	
word	sense	disambiguation	may	not	always	be	successful	

+ Online	behaviour	and	content	may	respond	to	other	
factors,	such	as	news	media	coverage	

+ Evaluation	of	outcomes	(e.g.	estimated	disease	rates	or	
the	impact	of	a	health	intervention)	is	hard



2.The	very	basics	of	(linear)	regression



Broad	definitions	for	regression

Regression	
A	statistical	tool	for	investigating	(and	estimating)	the	
relationship	between	variables.	There	is	usually	one	
dependent	variable	(y),	the	one	we	want	to	estimate,	
and	one	(or	more)	independent	variables	(x),	also	
known	as	predictors	or	observations.	

y	≈	f(x,w)	

Text	regression	
Regression,	where	the	observed	(input)	variable	is	
based	on	textual	information



Regression:	An	example

y	is	the	target	variable	
we	want	to	estimate	

by	looking	at	the		
observed	variable	x	

their	relationship	looks		
like	a	linear	one
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Regression:	An	example

which	means	that	we		
can	almost	accurately	(?)		
learn	a	weight	w	and		
a	bias	term	β	such	that	

y	=	w	*	x	+	β	

In	this	case:	

yOLS	=	18.817*x	+	267.922
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Ordinary	Least	Squares	(OLS)	regression	(1)

Regression basics — Ordinary Least Squares (1/2)
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i.e.	find	the	best	values	that	minimise		
this	function	(summation)



Ordinary	Least	Squares	(OLS)	regression	(2)Regression basics — Ordinary Least Squares (1/2)
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or	below	in	matrix	form,	i.e.	using	
vectors	and	matrices	instead	of	scalars



Regression:	How	good	is	an	inference?	(1)
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Materials
Search query data
For our analysis, we have used a volume of millions (issued) search queries geo-located in the US, dated from 04/01/2004 to
28/12/2013 (521 weeks) and filtered by Google’s embedded health vertical classifier. This is a relaxed topic classifier, and as a
result many search queries are not directly related to the topic of health. The data have been anonymized and aggregated before
conducting experiments. By performing an intersection among frequently occurring search queries geo-located in the 10 US
regions, we ended up with the weekly frequencies of 49,708 queries (from an original set of 297,057 queries).

Flu seasons
The search query data used in our experiments are spread across 10 years and encompass 9 complete and 2 partial flu seasons
(as identified by CDC). We test the performance of the proposed ILI models on data from the latest flu seasons. These were
2008-09 (48 weeks, 28/9/2008 to 29/8/2009), 2009-10 (57 weeks, 30/8/2009 to 2/10/2010), 2010-11 (52 weeks, 3/10/2010 to
1/10/2011), 2011-12 (52 weeks, 2/10/2011 to 29/9/2012) and 2012-13 (65 weeks, 30/9/2012 to 28/12/2013).

Official health reports
The CDC operates an outpatient ILI surveillance network (ILINet) consisting of more than 2,900 healthcare providers in all US
states. According to the CDC1 “ILI is defined as fever (temperature of 100°F [37.8°C] or greater) and a cough and/or a sore
throat without a known cause other than influenza.” ILI rates are published on a weekly basis (usually lagged by a 2-week
window) indicating the percentage of ILI prevalence at a national level. We use ILINet’s rates in the aforementioned 521 weeks
(see Fig. S1) to train and evaluate our models throughout our work.

Performance metrics
Given a set y = y1, . . . , yN of ground truth values and ŷ = ŷ1, . . . , ŷN of predictions, we apply the following metrics to assess
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MSE (ŷ,y) =
1

N

NX

t=1
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MSE (ŷ,y) =
1

N

NX

t=1
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Pearson	(linear)	correlation	∈	[-1,1]

Note:	Pearson	correlation	is	not	always	indicative	of	
performance	(i.e.	it	can	be	occasionally	misleading),	
but	useful	nonetheless



3. Using	OLS	regression	to	map	search	
query	frequency	to	an	influenza	rate	
estimate	—	Google	Flu	Trends

(Ginsberg	et	al.,	2009)

http://static.googleusercontent.com/media/research.google.com/en//archive/papers/detecting-influenza-epidemics.pdf


Google	Flu	Trends:	the	idea	(1)

Can	we	turn	search	query	information	(statistics)	to	
estimates	about	the	rate	of	influenza-like	illness		

in	the	real-world	population?



Google	Flu	Trends:	the	idea	(2)

Combining the n 5 45 highest-scoring queries was found to obtain
the best fit. These 45 search queries, although selected automatically,
appeared to be consistently related to ILIs. Other search queries in the
top 100, not included in our model, included topics like ‘high school
basketball’, which tend to coincide with influenza season in the
United States (Table 1).

Using this ILI-related query fraction as the explanatory variable,
we fit a final linear model to weekly ILI percentages between 2003 and
2007 for all nine regions together, thus obtaining a single, region-
independent coefficient. The model was able to obtain a good fit with
CDC-reported ILI percentages, with a mean correlation of 0.90
(min 5 0.80, max 5 0.96, n 5 9 regions; Fig. 2).

The final model was validated on 42 points per region of previously
untested data from 2007 to 2008, which were excluded from all
previous steps. Estimates generated for these 42 points obtained a
mean correlation of 0.97 (min 5 0.92, max 5 0.99, n 5 9 regions)
with the CDC-observed ILI percentages.

Throughout the 2007–08 influenza season we used preliminary
versions of our model to generate ILI estimates, and shared our
results each week with the Epidemiology and Prevention Branch of
Influenza Division at the CDC to evaluate timeliness and accuracy.
Figure 3 illustrates data available at different points throughout the
season. Across the nine regions, we were able to estimate consistently
the current ILI percentage 1–2 weeks ahead of the publication of
reports by the CDC’s US Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful for
public health planning, we sought to validate further our model

against weekly ILI percentages for individual states. The CDC does
not make state-level data publicly available, but we validated our
model against state-reported ILI percentages provided by the state
of Utah, and obtained a correlation of 0.90 across 42 validation points
(Supplementary Fig. 3).

Google web search queries can be used to estimate ILI percentages
accurately in each of the nine public health regions of the United
States. Because search queries can be processed quickly, the resulting
ILI estimates were consistently 1–2 weeks ahead of CDC ILI surveil-
lance reports. The early detection provided by this approach may
become an important line of defence against future influenza epi-
demics in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health officials
and health professionals to respond better to seasonal epidemics. If a
region experiences an early, sharp increase in ILI physician visits, it
may be possible to focus additional resources on that region to
identify the aetiology of the outbreak, providing extra vaccine capa-
city or raising local media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-based dia-
gnoses and surveillance. Notable increases in ILI-related search activity
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Figure 1 | An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-
sample points during cross-validation was obtained by summing the top 45
search queries. A steep drop in model performance occurs after adding query
81, which is ‘oscar nominations’.

Table 1 | Topics found in search queries which were found to be most cor-
related with CDC ILI data

Search query topic Top 45 queries Next 55 queries
n Weighted n Weighted

Influenza complication 11 18.15 5 3.40
Cold/flu remedy 8 5.05 6 5.03
General influenza symptoms 5 2.60 1 0.07
Term for influenza 4 3.74 6 0.30
Specific influenza symptom 4 2.54 6 3.74
Symptoms of an influenza
complication

4 2.21 2 0.92

Antibiotic medication 3 6.23 3 3.17
General influenza remedies 2 0.18 1 0.32
Symptoms of a related disease 2 1.66 2 0.77
Antiviral medication 1 0.39 1 0.74
Related disease 1 6.66 3 3.77
Unrelated to influenza 0 0.00 19 28.37
Total 45 49.40 55 50.60

The top 45 queries were used in our final model; the next 55 queries are presented for
comparison purposes. The number of queries in each topic is indicated, as well as query-
volume-weighted counts, reflecting the relative frequency of queries in each topic.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.
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Figure 3 | ILI percentages estimated by our model (black) and provided by
the CDC (red) in the mid-Atlantic region, showing data available at four
points in the 2007-2008 influenza season. During week 5 we detected a
sharply increasing ILI percentage in the mid-Atlantic region; similarly, on 3
March our model indicated that the peak ILI percentage had been reached
during week 8, with sharp declines in weeks 9 and 10. Both results were later
confirmed by CDC ILI data.
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Why	is	this	an	interesting	task?	

1. For	all	the	reasons	we	mentioned	already!	 
(see	the	advantages	of	digital	health	surveillance)	

2. Plus,	seasonal	influenza	epidemics	are	a	major	public	
health	concern,	i.e.	causing	250,000	to	500,000	deaths		
worldwide	per	year.



Google	Flu	Trends:	the	data

+ Search	query	logs	(anonymised)	between	2003	and	2008	

+ Weekly	counts	of	50	million	queries	conducted	by	users	
located	in	the	US	and	its	9	broad	regions	(formed	by	
aggregations	of	member	states)	

+ Each	query	q	normalised	using	the	total	number	of	
searches	conducted	in	the	same	weekly	time	interval	(t)	
and	location	

+ Model	training	and	evaluation	based	on	CDC	records

www.nature.com/scientificreports/

2Scientific RepoRts | 5:12760 | DOi: 10.1038/srep12760

improvements: expanding and re-weighting the set of queries used for prediction using linear regularized 
regression, accounting for nonlinear relationships between the predictors and the response, and incorpo-
rating time series structure. We focus on national-level US search query data, and our task is to nowcast 
(i.e., to estimate the current value of)21,22 weekly ILI rates as published by the outpatient influenza-like 
illness surveillance network (ILINet) of the Centers for Disease Control and Prevention (CDC).

We use query and CDC data spanning across a decade (2004–2013, all inclusive) and evaluate weekly 
ILI nowcasts during the last five flu periods (2008–2013). The proposed nonlinear model is able to 
better capture the relationship between search queries and ILI rates. Given this evaluation setup, we 
qualitatively explain the settings under which GFT mispredicted ILI in past seasons in contrast with the 
improvements that the new approaches bring in. Furthermore, by combining query-based predictions 
and recent ILI information in an autoregressive model, we significantly improve prediction error, high-
lighting the utility of incorporating user-generated data into a conventional disease surveillance system.

Modeling search queries for nowcasting disease rates 
This section focuses on supervised learning approaches for modeling the relationship between search 
queries and an ILI rate. We represent search queries by their weekly fraction of total search volume, i.e., 
for a query q the weekly normalized frequency is expressed by

=
#

#
.

( ),ix
q t

t
searches for in week

searches in week 1t q

Formally, a function that relates weekly search query frequencies to ILI rates is denoted by →×X Yf : T Q T , 
where = = ,X Y [0 1] represents the space of possible query fractions and ILI percentages, T and Q are 
the numbers of observed weeks and queries respectively. For a certain week, ∈i &y  denotes the ILI rate 
and ∈i %x Q is the vector of query volumes; for a set of T weeks, all query volumes are represented by 
the T ×  Q matrix ∼X. Exploratory analysis found that pairwise relationships between query rates and ILI 
were approximately linear in the logit space, motivating the use of this transformation across all experi-
ments (see Supplementary Fig. S3); related work also followed the same modeling principle13,23. We, 
therefore, use = ( )ix xlogit  and = ( )iy ylogit , where logit(α) =  log(α/(1 −  α)), considering that the logit 
function operates in a point-wise manner; similarly X denotes the logit-transformed input matrix. We 
use xt and yt to express their values for a particular week t. Predictions made by the presented models 
undergo the inverse transformation before analysis.

Linear models. Previous approaches for search query modeling proposed linear functions on top 
of manually9 or automatically13 selected search queries. In particular, GFT’s regression model relates 
ILI rates (y) to queries via yt =  β +  w·z +  ε, where the single covariate z denotes the logit-transformed 
normalized aggregate frequency of a set of queries, w is a weight coefficient we aim to learn, β denotes 
the intercept term, and ε is independent, zero-centered noise. The set of queries is selected through a 
multi-step correlation analysis (see Supplementary Information [SI], Feature selection in the GFT model).

Recent works indicated that this basic model mispredicted ILI in several flu seasons, with significant 
errors happening during 2012–1319,20. Whereas various scenarios, such as media attention influencing 
user behavior, could explain bad predictive performance, it is also evident that the only predictor of this 
model (the aggregate frequency of the selected queries) could have been affected by a single spurious or 
divergent query. We elaborate further on this when presenting the experimental results in the following 
section.

A more expressive linear model directly relates individual (non-aggregated) queries to ILI. This model 
can be written as β ε= + +Τy w xt , which defines a wq parameter for each of the potentially hundreds 
of thousands of search queries considered. With only a few hundred weeks to train on, this system is 
under-determined (T <  Q)24. However, considering that most wq values should be zero because many 
queries are irrelevant (i.e., assuming sparsity), there exist regularized regression schemes that provide 
solutions. One such method, known as the Lasso25, simultaneously performs query selection and weight 
learning in a linear regression setting by adding a regularization term (on w’s L1-norm) in the objective 
function of ordinary least squares. Lasso has been effective in the related task of nowcasting ILI rates 
using Twitter content10,15. However, it has been shown that Lasso cannot make a consistent selection of 
the true model, when collinear predictors are present in the data26. Given that the frequency time series 
of some of the search queries we model will be correlated, we use a more robust generalization of Lasso, 
known as the Elastic Net27. Elastic Net adds an L2-norm constraint on Lasso’s objective function and is 
defined by

( )∑ ∑ ∑β λ λ
⎛

⎝
⎜⎜⎜⎜

+ − + +
⎞

⎠

⎟⎟⎟⎟⎟
,

( )β

Τ

, = = =
y w ww xargmin

2t

T

t t
j

Q

j
j

Q

j
w 1

2
1

1
2

1

2



Google	Flu	Trends:	the	method	(1)

Detecting influenza epidemics using search engine query data 2

Traditional surveillance systems, including those employed by 
the U.S. Centers for Disease Control and Prevention (CDC) and 
the European Influenza Surveillance Scheme (EISS), rely on 
both virologic and clinical data, including influenza-like illness 
(ILI) physician visits. CDC publishes national and regional data 
from these surveillance systems on a weekly basis, typically 
with a 1-2 week reporting lag.

In an attempt to provide faster detection, innovative 
surveillance systems have been created to monitor indirect 
signals of influenza activity, such as call volume to telephone 
triage advice lines5 and over-the-counter drug sales6. About 
90 million American adults are believed to search online for 
information about specific diseases or medical problems each 
year7, making web search queries a uniquely valuable source 
of information about health trends. Previous attempts at using 
online activity for influenza surveillance have counted search 
queries submitted to a Swedish medical website8, visitors to 
certain pages on a U.S. health website9, and user clicks on a 
search keyword advertisement in Canada10. A set of Yahoo 
search queries containing the words “flu” or “influenza” were 
found to correlate with virologic and mortality surveillance 
data over multiple years11.

Our proposed system builds on these earlier works by utilizing 
an automated method of discovering influenza-related search 
queries. By processing hundreds of billions of individual 
searches from five years of Google web search logs, our 
system generates more comprehensive models for use in 
influenza surveillance, with regional and state-level estimates 
of influenza-like illness (ILI) activity in the United States. 
Widespread global usage of online search engines may enable 
models to eventually be developed in international settings.

By aggregating historical logs of online web search queries 
submitted between 2003 and 2008, we computed time series 
of weekly counts for 50 million of the most common search 
queries in the United States. Separate aggregate weekly 
counts were kept for every query in each state. No information 
about the identity of any user was retained. Each time series 
was normalized by dividing the count for each query in a 
particular week by the total number of online search queries 
submitted in that location during the week, resulting in a query 
fraction (Supplementary Figure 1).

We sought to develop a simple model which estimates the 
probability that a random physician visit in a particular region 
is related to an influenza-like illness (ILI); this is equivalent 
to the percentage of ILI-related physician visits. A single 
explanatory variable was used: the probability that a random 
search query submitted from the same region is ILI-related, as 
determined by an automated method described below. We fit 
a linear model using the log-odds of an ILI physician visit and 
the log-odds of an ILI-related search query:

logit(P) = β0 + β1 × logit(Q) + ε

where P is the percentage of ILI physician visits, Q is 
the ILI-related query fraction, β0 is the intercept, 

β1 is the multiplicative coefficient, and ε is the error term. 
logit(P) is the natural log of P/(1-P).

Publicly available historical data from the CDC’s U.S. Influenza 
Sentinel Provider Surveillance Network12 was used to help 
build our models. For each of the nine surveillance regions of 
the United States, CDC reported the average percentage of 
all outpatient visits to sentinel providers that were ILI-related 
on a weekly basis. No data were provided for weeks outside 
of the annual influenza season, and we excluded such dates 
from model fitting, though our model was used to generate 
unvalidated ILI estimates for these weeks.

We designed an automated method of selecting ILI-related 
search queries, requiring no prior knowledge about influenza. 
We measured how effectively our model would fit the CDC 
ILI data in each region if we used only a single query as the 
explanatory variable Q. Each of the 50 million candidate 
queries in our database was separately tested in this manner, 
to identify the search queries which could most accurately 
model the CDC ILI visit percentage in each region. Our 
approach rewarded queries which exhibited regional variations 
similar to the regional variations in CDC ILI data: the chance 
that a random search query can fit the ILI percentage in all 
nine regions is considerably less than the chance that a 
random search query can fit a single location (Supplementary 
Figure 2).

The automated query selection process produced a list of the 
highest scoring search queries, sorted by mean Z-transformed 
correlation across the nine regions. To decide which queries 
would be included in the ILI-related query fraction Q, we 
considered different sets of N top scoring queries. We 
measured the performance of these models based on the 
sum of the queries in each set, and picked N such that we 
obtained the best fit against out-of-sample ILI data across the 
nine regions (Figure 1).

Combining the N=45 highest-scoring queries was found to 
obtain the best fit. These 45 search queries, though selected 

Figure 1: An evaluation of how many top-scoring queries to include in the 
ILI-related query fraction. Maximal performance at estimating out-of-sample 
points during cross-validation was obtained by summing the top 45 search 
queries. A steep drop in model performance occurs after adding query 81, 
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Traditional surveillance systems, including those employed by 
the U.S. Centers for Disease Control and Prevention (CDC) and 
the European Influenza Surveillance Scheme (EISS), rely on 
both virologic and clinical data, including influenza-like illness 
(ILI) physician visits. CDC publishes national and regional data 
from these surveillance systems on a weekly basis, typically 
with a 1-2 week reporting lag.

In an attempt to provide faster detection, innovative 
surveillance systems have been created to monitor indirect 
signals of influenza activity, such as call volume to telephone 
triage advice lines5 and over-the-counter drug sales6. About 
90 million American adults are believed to search online for 
information about specific diseases or medical problems each 
year7, making web search queries a uniquely valuable source 
of information about health trends. Previous attempts at using 
online activity for influenza surveillance have counted search 
queries submitted to a Swedish medical website8, visitors to 
certain pages on a U.S. health website9, and user clicks on a 
search keyword advertisement in Canada10. A set of Yahoo 
search queries containing the words “flu” or “influenza” were 
found to correlate with virologic and mortality surveillance 
data over multiple years11.

Our proposed system builds on these earlier works by utilizing 
an automated method of discovering influenza-related search 
queries. By processing hundreds of billions of individual 
searches from five years of Google web search logs, our 
system generates more comprehensive models for use in 
influenza surveillance, with regional and state-level estimates 
of influenza-like illness (ILI) activity in the United States. 
Widespread global usage of online search engines may enable 
models to eventually be developed in international settings.

By aggregating historical logs of online web search queries 
submitted between 2003 and 2008, we computed time series 
of weekly counts for 50 million of the most common search 
queries in the United States. Separate aggregate weekly 
counts were kept for every query in each state. No information 
about the identity of any user was retained. Each time series 
was normalized by dividing the count for each query in a 
particular week by the total number of online search queries 
submitted in that location during the week, resulting in a query 
fraction (Supplementary Figure 1).

We sought to develop a simple model which estimates the 
probability that a random physician visit in a particular region 
is related to an influenza-like illness (ILI); this is equivalent 
to the percentage of ILI-related physician visits. A single 
explanatory variable was used: the probability that a random 
search query submitted from the same region is ILI-related, as 
determined by an automated method described below. We fit 
a linear model using the log-odds of an ILI physician visit and 
the log-odds of an ILI-related search query:

logit(P) = β0 + β1 × logit(Q) + ε

where P is the percentage of ILI physician visits, Q is 
the ILI-related query fraction, β0 is the intercept, 

β1 is the multiplicative coefficient, and ε is the error term. 
logit(P) is the natural log of P/(1-P).
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the United States, CDC reported the average percentage of 
all outpatient visits to sentinel providers that were ILI-related 
on a weekly basis. No data were provided for weeks outside 
of the annual influenza season, and we excluded such dates 
from model fitting, though our model was used to generate 
unvalidated ILI estimates for these weeks.

We designed an automated method of selecting ILI-related 
search queries, requiring no prior knowledge about influenza. 
We measured how effectively our model would fit the CDC 
ILI data in each region if we used only a single query as the 
explanatory variable Q. Each of the 50 million candidate 
queries in our database was separately tested in this manner, 
to identify the search queries which could most accurately 
model the CDC ILI visit percentage in each region. Our 
approach rewarded queries which exhibited regional variations 
similar to the regional variations in CDC ILI data: the chance 
that a random search query can fit the ILI percentage in all 
nine regions is considerably less than the chance that a 
random search query can fit a single location (Supplementary 
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The automated query selection process produced a list of the 
highest scoring search queries, sorted by mean Z-transformed 
correlation across the nine regions. To decide which queries 
would be included in the ILI-related query fraction Q, we 
considered different sets of N top scoring queries. We 
measured the performance of these models based on the 
sum of the queries in each set, and picked N such that we 
obtained the best fit against out-of-sample ILI data across the 
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the U.S. Centers for Disease Control and Prevention (CDC) and 
the European Influenza Surveillance Scheme (EISS), rely on 
both virologic and clinical data, including influenza-like illness 
(ILI) physician visits. CDC publishes national and regional data 
from these surveillance systems on a weekly basis, typically 
with a 1-2 week reporting lag.

In an attempt to provide faster detection, innovative 
surveillance systems have been created to monitor indirect 
signals of influenza activity, such as call volume to telephone 
triage advice lines5 and over-the-counter drug sales6. About 
90 million American adults are believed to search online for 
information about specific diseases or medical problems each 
year7, making web search queries a uniquely valuable source 
of information about health trends. Previous attempts at using 
online activity for influenza surveillance have counted search 
queries submitted to a Swedish medical website8, visitors to 
certain pages on a U.S. health website9, and user clicks on a 
search keyword advertisement in Canada10. A set of Yahoo 
search queries containing the words “flu” or “influenza” were 
found to correlate with virologic and mortality surveillance 
data over multiple years11.

Our proposed system builds on these earlier works by utilizing 
an automated method of discovering influenza-related search 
queries. By processing hundreds of billions of individual 
searches from five years of Google web search logs, our 
system generates more comprehensive models for use in 
influenza surveillance, with regional and state-level estimates 
of influenza-like illness (ILI) activity in the United States. 
Widespread global usage of online search engines may enable 
models to eventually be developed in international settings.

By aggregating historical logs of online web search queries 
submitted between 2003 and 2008, we computed time series 
of weekly counts for 50 million of the most common search 
queries in the United States. Separate aggregate weekly 
counts were kept for every query in each state. No information 
about the identity of any user was retained. Each time series 
was normalized by dividing the count for each query in a 
particular week by the total number of online search queries 
submitted in that location during the week, resulting in a query 
fraction (Supplementary Figure 1).

We sought to develop a simple model which estimates the 
probability that a random physician visit in a particular region 
is related to an influenza-like illness (ILI); this is equivalent 
to the percentage of ILI-related physician visits. A single 
explanatory variable was used: the probability that a random 
search query submitted from the same region is ILI-related, as 
determined by an automated method described below. We fit 
a linear model using the log-odds of an ILI physician visit and 
the log-odds of an ILI-related search query:

logit(P) = β0 + β1 × logit(Q) + ε

where P is the percentage of ILI physician visits, Q is 
the ILI-related query fraction, β0 is the intercept, 

β1 is the multiplicative coefficient, and ε is the error term. 
logit(P) is the natural log of P/(1-P).

Publicly available historical data from the CDC’s U.S. Influenza 
Sentinel Provider Surveillance Network12 was used to help 
build our models. For each of the nine surveillance regions of 
the United States, CDC reported the average percentage of 
all outpatient visits to sentinel providers that were ILI-related 
on a weekly basis. No data were provided for weeks outside 
of the annual influenza season, and we excluded such dates 
from model fitting, though our model was used to generate 
unvalidated ILI estimates for these weeks.

We designed an automated method of selecting ILI-related 
search queries, requiring no prior knowledge about influenza. 
We measured how effectively our model would fit the CDC 
ILI data in each region if we used only a single query as the 
explanatory variable Q. Each of the 50 million candidate 
queries in our database was separately tested in this manner, 
to identify the search queries which could most accurately 
model the CDC ILI visit percentage in each region. Our 
approach rewarded queries which exhibited regional variations 
similar to the regional variations in CDC ILI data: the chance 
that a random search query can fit the ILI percentage in all 
nine regions is considerably less than the chance that a 
random search query can fit a single location (Supplementary 
Figure 2).

The automated query selection process produced a list of the 
highest scoring search queries, sorted by mean Z-transformed 
correlation across the nine regions. To decide which queries 
would be included in the ILI-related query fraction Q, we 
considered different sets of N top scoring queries. We 
measured the performance of these models based on the 
sum of the queries in each set, and picked N such that we 
obtained the best fit against out-of-sample ILI data across the 
nine regions (Figure 1).

Combining the N=45 highest-scoring queries was found to 
obtain the best fit. These 45 search queries, though selected 
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the U.S. Centers for Disease Control and Prevention (CDC) and 
the European Influenza Surveillance Scheme (EISS), rely on 
both virologic and clinical data, including influenza-like illness 
(ILI) physician visits. CDC publishes national and regional data 
from these surveillance systems on a weekly basis, typically 
with a 1-2 week reporting lag.

In an attempt to provide faster detection, innovative 
surveillance systems have been created to monitor indirect 
signals of influenza activity, such as call volume to telephone 
triage advice lines5 and over-the-counter drug sales6. About 
90 million American adults are believed to search online for 
information about specific diseases or medical problems each 
year7, making web search queries a uniquely valuable source 
of information about health trends. Previous attempts at using 
online activity for influenza surveillance have counted search 
queries submitted to a Swedish medical website8, visitors to 
certain pages on a U.S. health website9, and user clicks on a 
search keyword advertisement in Canada10. A set of Yahoo 
search queries containing the words “flu” or “influenza” were 
found to correlate with virologic and mortality surveillance 
data over multiple years11.

Our proposed system builds on these earlier works by utilizing 
an automated method of discovering influenza-related search 
queries. By processing hundreds of billions of individual 
searches from five years of Google web search logs, our 
system generates more comprehensive models for use in 
influenza surveillance, with regional and state-level estimates 
of influenza-like illness (ILI) activity in the United States. 
Widespread global usage of online search engines may enable 
models to eventually be developed in international settings.

By aggregating historical logs of online web search queries 
submitted between 2003 and 2008, we computed time series 
of weekly counts for 50 million of the most common search 
queries in the United States. Separate aggregate weekly 
counts were kept for every query in each state. No information 
about the identity of any user was retained. Each time series 
was normalized by dividing the count for each query in a 
particular week by the total number of online search queries 
submitted in that location during the week, resulting in a query 
fraction (Supplementary Figure 1).

We sought to develop a simple model which estimates the 
probability that a random physician visit in a particular region 
is related to an influenza-like illness (ILI); this is equivalent 
to the percentage of ILI-related physician visits. A single 
explanatory variable was used: the probability that a random 
search query submitted from the same region is ILI-related, as 
determined by an automated method described below. We fit 
a linear model using the log-odds of an ILI physician visit and 
the log-odds of an ILI-related search query:

logit(P) = β0 + β1 × logit(Q) + ε

where P is the percentage of ILI physician visits, Q is 
the ILI-related query fraction, β0 is the intercept, 

β1 is the multiplicative coefficient, and ε is the error term. 
logit(P) is the natural log of P/(1-P).

Publicly available historical data from the CDC’s U.S. Influenza 
Sentinel Provider Surveillance Network12 was used to help 
build our models. For each of the nine surveillance regions of 
the United States, CDC reported the average percentage of 
all outpatient visits to sentinel providers that were ILI-related 
on a weekly basis. No data were provided for weeks outside 
of the annual influenza season, and we excluded such dates 
from model fitting, though our model was used to generate 
unvalidated ILI estimates for these weeks.

We designed an automated method of selecting ILI-related 
search queries, requiring no prior knowledge about influenza. 
We measured how effectively our model would fit the CDC 
ILI data in each region if we used only a single query as the 
explanatory variable Q. Each of the 50 million candidate 
queries in our database was separately tested in this manner, 
to identify the search queries which could most accurately 
model the CDC ILI visit percentage in each region. Our 
approach rewarded queries which exhibited regional variations 
similar to the regional variations in CDC ILI data: the chance 
that a random search query can fit the ILI percentage in all 
nine regions is considerably less than the chance that a 
random search query can fit a single location (Supplementary 
Figure 2).

The automated query selection process produced a list of the 
highest scoring search queries, sorted by mean Z-transformed 
correlation across the nine regions. To decide which queries 
would be included in the ILI-related query fraction Q, we 
considered different sets of N top scoring queries. We 
measured the performance of these models based on the 
sum of the queries in each set, and picked N such that we 
obtained the best fit against out-of-sample ILI data across the 
nine regions (Figure 1).

Combining the N=45 highest-scoring queries was found to 
obtain the best fit. These 45 search queries, though selected 
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improvements: expanding and re-weighting the set of queries used for prediction using linear regularized 
regression, accounting for nonlinear relationships between the predictors and the response, and incorpo-
rating time series structure. We focus on national-level US search query data, and our task is to nowcast 
(i.e., to estimate the current value of)21,22 weekly ILI rates as published by the outpatient influenza-like 
illness surveillance network (ILINet) of the Centers for Disease Control and Prevention (CDC).

We use query and CDC data spanning across a decade (2004–2013, all inclusive) and evaluate weekly 
ILI nowcasts during the last five flu periods (2008–2013). The proposed nonlinear model is able to 
better capture the relationship between search queries and ILI rates. Given this evaluation setup, we 
qualitatively explain the settings under which GFT mispredicted ILI in past seasons in contrast with the 
improvements that the new approaches bring in. Furthermore, by combining query-based predictions 
and recent ILI information in an autoregressive model, we significantly improve prediction error, high-
lighting the utility of incorporating user-generated data into a conventional disease surveillance system.

Modeling search queries for nowcasting disease rates 
This section focuses on supervised learning approaches for modeling the relationship between search 
queries and an ILI rate. We represent search queries by their weekly fraction of total search volume, i.e., 
for a query q the weekly normalized frequency is expressed by

=
#

#
.

( ),ix
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t
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Formally, a function that relates weekly search query frequencies to ILI rates is denoted by →×X Yf : T Q T , 
where = = ,X Y [0 1] represents the space of possible query fractions and ILI percentages, T and Q are 
the numbers of observed weeks and queries respectively. For a certain week, ∈i &y  denotes the ILI rate 
and ∈i %x Q is the vector of query volumes; for a set of T weeks, all query volumes are represented by 
the T ×  Q matrix ∼X. Exploratory analysis found that pairwise relationships between query rates and ILI 
were approximately linear in the logit space, motivating the use of this transformation across all experi-
ments (see Supplementary Fig. S3); related work also followed the same modeling principle13,23. We, 
therefore, use = ( )ix xlogit  and = ( )iy ylogit , where logit(α) =  log(α/(1 −  α)), considering that the logit 
function operates in a point-wise manner; similarly X denotes the logit-transformed input matrix. We 
use xt and yt to express their values for a particular week t. Predictions made by the presented models 
undergo the inverse transformation before analysis.

Linear models. Previous approaches for search query modeling proposed linear functions on top 
of manually9 or automatically13 selected search queries. In particular, GFT’s regression model relates 
ILI rates (y) to queries via yt =  β +  w·z +  ε, where the single covariate z denotes the logit-transformed 
normalized aggregate frequency of a set of queries, w is a weight coefficient we aim to learn, β denotes 
the intercept term, and ε is independent, zero-centered noise. The set of queries is selected through a 
multi-step correlation analysis (see Supplementary Information [SI], Feature selection in the GFT model).

Recent works indicated that this basic model mispredicted ILI in several flu seasons, with significant 
errors happening during 2012–1319,20. Whereas various scenarios, such as media attention influencing 
user behavior, could explain bad predictive performance, it is also evident that the only predictor of this 
model (the aggregate frequency of the selected queries) could have been affected by a single spurious or 
divergent query. We elaborate further on this when presenting the experimental results in the following 
section.

A more expressive linear model directly relates individual (non-aggregated) queries to ILI. This model 
can be written as β ε= + +Τy w xt , which defines a wq parameter for each of the potentially hundreds 
of thousands of search queries considered. With only a few hundred weeks to train on, this system is 
under-determined (T <  Q)24. However, considering that most wq values should be zero because many 
queries are irrelevant (i.e., assuming sparsity), there exist regularized regression schemes that provide 
solutions. One such method, known as the Lasso25, simultaneously performs query selection and weight 
learning in a linear regression setting by adding a regularization term (on w’s L1-norm) in the objective 
function of ordinary least squares. Lasso has been effective in the related task of nowcasting ILI rates 
using Twitter content10,15. However, it has been shown that Lasso cannot make a consistent selection of 
the true model, when collinear predictors are present in the data26. Given that the frequency time series 
of some of the search queries we model will be correlated, we use a more robust generalization of Lasso, 
known as the Elastic Net27. Elastic Net adds an L2-norm constraint on Lasso’s objective function and is 
defined by
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improvements: expanding and re-weighting the set of queries used for prediction using linear regularized 
regression, accounting for nonlinear relationships between the predictors and the response, and incorpo-
rating time series structure. We focus on national-level US search query data, and our task is to nowcast 
(i.e., to estimate the current value of)21,22 weekly ILI rates as published by the outpatient influenza-like 
illness surveillance network (ILINet) of the Centers for Disease Control and Prevention (CDC).

We use query and CDC data spanning across a decade (2004–2013, all inclusive) and evaluate weekly 
ILI nowcasts during the last five flu periods (2008–2013). The proposed nonlinear model is able to 
better capture the relationship between search queries and ILI rates. Given this evaluation setup, we 
qualitatively explain the settings under which GFT mispredicted ILI in past seasons in contrast with the 
improvements that the new approaches bring in. Furthermore, by combining query-based predictions 
and recent ILI information in an autoregressive model, we significantly improve prediction error, high-
lighting the utility of incorporating user-generated data into a conventional disease surveillance system.

Modeling search queries for nowcasting disease rates 
This section focuses on supervised learning approaches for modeling the relationship between search 
queries and an ILI rate. We represent search queries by their weekly fraction of total search volume, i.e., 
for a query q the weekly normalized frequency is expressed by
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Formally, a function that relates weekly search query frequencies to ILI rates is denoted by →×X Yf : T Q T , 
where = = ,X Y [0 1] represents the space of possible query fractions and ILI percentages, T and Q are 
the numbers of observed weeks and queries respectively. For a certain week, ∈i &y  denotes the ILI rate 
and ∈i %x Q is the vector of query volumes; for a set of T weeks, all query volumes are represented by 
the T ×  Q matrix ∼X. Exploratory analysis found that pairwise relationships between query rates and ILI 
were approximately linear in the logit space, motivating the use of this transformation across all experi-
ments (see Supplementary Fig. S3); related work also followed the same modeling principle13,23. We, 
therefore, use = ( )ix xlogit  and = ( )iy ylogit , where logit(α) =  log(α/(1 −  α)), considering that the logit 
function operates in a point-wise manner; similarly X denotes the logit-transformed input matrix. We 
use xt and yt to express their values for a particular week t. Predictions made by the presented models 
undergo the inverse transformation before analysis.

Linear models. Previous approaches for search query modeling proposed linear functions on top 
of manually9 or automatically13 selected search queries. In particular, GFT’s regression model relates 
ILI rates (y) to queries via yt =  β +  w·z +  ε, where the single covariate z denotes the logit-transformed 
normalized aggregate frequency of a set of queries, w is a weight coefficient we aim to learn, β denotes 
the intercept term, and ε is independent, zero-centered noise. The set of queries is selected through a 
multi-step correlation analysis (see Supplementary Information [SI], Feature selection in the GFT model).

Recent works indicated that this basic model mispredicted ILI in several flu seasons, with significant 
errors happening during 2012–1319,20. Whereas various scenarios, such as media attention influencing 
user behavior, could explain bad predictive performance, it is also evident that the only predictor of this 
model (the aggregate frequency of the selected queries) could have been affected by a single spurious or 
divergent query. We elaborate further on this when presenting the experimental results in the following 
section.

A more expressive linear model directly relates individual (non-aggregated) queries to ILI. This model 
can be written as β ε= + +Τy w xt , which defines a wq parameter for each of the potentially hundreds 
of thousands of search queries considered. With only a few hundred weeks to train on, this system is 
under-determined (T <  Q)24. However, considering that most wq values should be zero because many 
queries are irrelevant (i.e., assuming sparsity), there exist regularized regression schemes that provide 
solutions. One such method, known as the Lasso25, simultaneously performs query selection and weight 
learning in a linear regression setting by adding a regularization term (on w’s L1-norm) in the objective 
function of ordinary least squares. Lasso has been effective in the related task of nowcasting ILI rates 
using Twitter content10,15. However, it has been shown that Lasso cannot make a consistent selection of 
the true model, when collinear predictors are present in the data26. Given that the frequency time series 
of some of the search queries we model will be correlated, we use a more robust generalization of Lasso, 
known as the Elastic Net27. Elastic Net adds an L2-norm constraint on Lasso’s objective function and is 
defined by
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improvements: expanding and re-weighting the set of queries used for prediction using linear regularized 
regression, accounting for nonlinear relationships between the predictors and the response, and incorpo-
rating time series structure. We focus on national-level US search query data, and our task is to nowcast 
(i.e., to estimate the current value of)21,22 weekly ILI rates as published by the outpatient influenza-like 
illness surveillance network (ILINet) of the Centers for Disease Control and Prevention (CDC).

We use query and CDC data spanning across a decade (2004–2013, all inclusive) and evaluate weekly 
ILI nowcasts during the last five flu periods (2008–2013). The proposed nonlinear model is able to 
better capture the relationship between search queries and ILI rates. Given this evaluation setup, we 
qualitatively explain the settings under which GFT mispredicted ILI in past seasons in contrast with the 
improvements that the new approaches bring in. Furthermore, by combining query-based predictions 
and recent ILI information in an autoregressive model, we significantly improve prediction error, high-
lighting the utility of incorporating user-generated data into a conventional disease surveillance system.

Modeling search queries for nowcasting disease rates 
This section focuses on supervised learning approaches for modeling the relationship between search 
queries and an ILI rate. We represent search queries by their weekly fraction of total search volume, i.e., 
for a query q the weekly normalized frequency is expressed by

=
#

#
.

( ),ix
q t

t
searches for in week

searches in week 1t q

Formally, a function that relates weekly search query frequencies to ILI rates is denoted by →×X Yf : T Q T , 
where = = ,X Y [0 1] represents the space of possible query fractions and ILI percentages, T and Q are 
the numbers of observed weeks and queries respectively. For a certain week, ∈i &y  denotes the ILI rate 
and ∈i %x Q is the vector of query volumes; for a set of T weeks, all query volumes are represented by 
the T ×  Q matrix ∼X. Exploratory analysis found that pairwise relationships between query rates and ILI 
were approximately linear in the logit space, motivating the use of this transformation across all experi-
ments (see Supplementary Fig. S3); related work also followed the same modeling principle13,23. We, 
therefore, use = ( )ix xlogit  and = ( )iy ylogit , where logit(α) =  log(α/(1 −  α)), considering that the logit 
function operates in a point-wise manner; similarly X denotes the logit-transformed input matrix. We 
use xt and yt to express their values for a particular week t. Predictions made by the presented models 
undergo the inverse transformation before analysis.

Linear models. Previous approaches for search query modeling proposed linear functions on top 
of manually9 or automatically13 selected search queries. In particular, GFT’s regression model relates 
ILI rates (y) to queries via yt =  β +  w·z +  ε, where the single covariate z denotes the logit-transformed 
normalized aggregate frequency of a set of queries, w is a weight coefficient we aim to learn, β denotes 
the intercept term, and ε is independent, zero-centered noise. The set of queries is selected through a 
multi-step correlation analysis (see Supplementary Information [SI], Feature selection in the GFT model).

Recent works indicated that this basic model mispredicted ILI in several flu seasons, with significant 
errors happening during 2012–1319,20. Whereas various scenarios, such as media attention influencing 
user behavior, could explain bad predictive performance, it is also evident that the only predictor of this 
model (the aggregate frequency of the selected queries) could have been affected by a single spurious or 
divergent query. We elaborate further on this when presenting the experimental results in the following 
section.

A more expressive linear model directly relates individual (non-aggregated) queries to ILI. This model 
can be written as β ε= + +Τy w xt , which defines a wq parameter for each of the potentially hundreds 
of thousands of search queries considered. With only a few hundred weeks to train on, this system is 
under-determined (T <  Q)24. However, considering that most wq values should be zero because many 
queries are irrelevant (i.e., assuming sparsity), there exist regularized regression schemes that provide 
solutions. One such method, known as the Lasso25, simultaneously performs query selection and weight 
learning in a linear regression setting by adding a regularization term (on w’s L1-norm) in the objective 
function of ordinary least squares. Lasso has been effective in the related task of nowcasting ILI rates 
using Twitter content10,15. However, it has been shown that Lasso cannot make a consistent selection of 
the true model, when collinear predictors are present in the data26. Given that the frequency time series 
of some of the search queries we model will be correlated, we use a more robust generalization of Lasso, 
known as the Elastic Net27. Elastic Net adds an L2-norm constraint on Lasso’s objective function and is 
defined by
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Google	Flu	Trends:	the	method	(3)
1. A	flu	rate	estimation	model	is	trained	on	each	query	(50	million)	

separately	for	the	9	US	regions,	i.e.	450	million	models	are	trained	
2. The	N	top	performing	queries	(on	average	across	the	9	regions)	are	

identified;	based	on	Pearson	correlation	(r)	between	inferences	and	CDC	
ILI	rates	

3. Starting	from	the	best	performing	query	and	adding	up	one	query	each	
time,	a	new	model	is	trained	and	evaluated

Combining the n 5 45 highest-scoring queries was found to obtain
the best fit. These 45 search queries, although selected automatically,
appeared to be consistently related to ILIs. Other search queries in the
top 100, not included in our model, included topics like ‘high school
basketball’, which tend to coincide with influenza season in the
United States (Table 1).

Using this ILI-related query fraction as the explanatory variable,
we fit a final linear model to weekly ILI percentages between 2003 and
2007 for all nine regions together, thus obtaining a single, region-
independent coefficient. The model was able to obtain a good fit with
CDC-reported ILI percentages, with a mean correlation of 0.90
(min 5 0.80, max 5 0.96, n 5 9 regions; Fig. 2).

The final model was validated on 42 points per region of previously
untested data from 2007 to 2008, which were excluded from all
previous steps. Estimates generated for these 42 points obtained a
mean correlation of 0.97 (min 5 0.92, max 5 0.99, n 5 9 regions)
with the CDC-observed ILI percentages.

Throughout the 2007–08 influenza season we used preliminary
versions of our model to generate ILI estimates, and shared our
results each week with the Epidemiology and Prevention Branch of
Influenza Division at the CDC to evaluate timeliness and accuracy.
Figure 3 illustrates data available at different points throughout the
season. Across the nine regions, we were able to estimate consistently
the current ILI percentage 1–2 weeks ahead of the publication of
reports by the CDC’s US Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful for
public health planning, we sought to validate further our model

against weekly ILI percentages for individual states. The CDC does
not make state-level data publicly available, but we validated our
model against state-reported ILI percentages provided by the state
of Utah, and obtained a correlation of 0.90 across 42 validation points
(Supplementary Fig. 3).

Google web search queries can be used to estimate ILI percentages
accurately in each of the nine public health regions of the United
States. Because search queries can be processed quickly, the resulting
ILI estimates were consistently 1–2 weeks ahead of CDC ILI surveil-
lance reports. The early detection provided by this approach may
become an important line of defence against future influenza epi-
demics in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health officials
and health professionals to respond better to seasonal epidemics. If a
region experiences an early, sharp increase in ILI physician visits, it
may be possible to focus additional resources on that region to
identify the aetiology of the outbreak, providing extra vaccine capa-
city or raising local media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-based dia-
gnoses and surveillance. Notable increases in ILI-related search activity
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Figure 1 | An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-
sample points during cross-validation was obtained by summing the top 45
search queries. A steep drop in model performance occurs after adding query
81, which is ‘oscar nominations’.

Table 1 | Topics found in search queries which were found to be most cor-
related with CDC ILI data

Search query topic Top 45 queries Next 55 queries
n Weighted n Weighted

Influenza complication 11 18.15 5 3.40
Cold/flu remedy 8 5.05 6 5.03
General influenza symptoms 5 2.60 1 0.07
Term for influenza 4 3.74 6 0.30
Specific influenza symptom 4 2.54 6 3.74
Symptoms of an influenza
complication

4 2.21 2 0.92

Antibiotic medication 3 6.23 3 3.17
General influenza remedies 2 0.18 1 0.32
Symptoms of a related disease 2 1.66 2 0.77
Antiviral medication 1 0.39 1 0.74
Related disease 1 6.66 3 3.77
Unrelated to influenza 0 0.00 19 28.37
Total 45 49.40 55 50.60

The top 45 queries were used in our final model; the next 55 queries are presented for
comparison purposes. The number of queries in each topic is indicated, as well as query-
volume-weighted counts, reflecting the relative frequency of queries in each topic.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.
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Figure 3 | ILI percentages estimated by our model (black) and provided by
the CDC (red) in the mid-Atlantic region, showing data available at four
points in the 2007-2008 influenza season. During week 5 we detected a
sharply increasing ILI percentage in the mid-Atlantic region; similarly, on 3
March our model indicated that the peak ILI percentage had been reached
during week 8, with sharp declines in weeks 9 and 10. Both results were later
confirmed by CDC ILI data.
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Google	Flu	Trends:	the	results	(1)

Combining the n 5 45 highest-scoring queries was found to obtain
the best fit. These 45 search queries, although selected automatically,
appeared to be consistently related to ILIs. Other search queries in the
top 100, not included in our model, included topics like ‘high school
basketball’, which tend to coincide with influenza season in the
United States (Table 1).

Using this ILI-related query fraction as the explanatory variable,
we fit a final linear model to weekly ILI percentages between 2003 and
2007 for all nine regions together, thus obtaining a single, region-
independent coefficient. The model was able to obtain a good fit with
CDC-reported ILI percentages, with a mean correlation of 0.90
(min 5 0.80, max 5 0.96, n 5 9 regions; Fig. 2).

The final model was validated on 42 points per region of previously
untested data from 2007 to 2008, which were excluded from all
previous steps. Estimates generated for these 42 points obtained a
mean correlation of 0.97 (min 5 0.92, max 5 0.99, n 5 9 regions)
with the CDC-observed ILI percentages.

Throughout the 2007–08 influenza season we used preliminary
versions of our model to generate ILI estimates, and shared our
results each week with the Epidemiology and Prevention Branch of
Influenza Division at the CDC to evaluate timeliness and accuracy.
Figure 3 illustrates data available at different points throughout the
season. Across the nine regions, we were able to estimate consistently
the current ILI percentage 1–2 weeks ahead of the publication of
reports by the CDC’s US Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful for
public health planning, we sought to validate further our model

against weekly ILI percentages for individual states. The CDC does
not make state-level data publicly available, but we validated our
model against state-reported ILI percentages provided by the state
of Utah, and obtained a correlation of 0.90 across 42 validation points
(Supplementary Fig. 3).

Google web search queries can be used to estimate ILI percentages
accurately in each of the nine public health regions of the United
States. Because search queries can be processed quickly, the resulting
ILI estimates were consistently 1–2 weeks ahead of CDC ILI surveil-
lance reports. The early detection provided by this approach may
become an important line of defence against future influenza epi-
demics in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health officials
and health professionals to respond better to seasonal epidemics. If a
region experiences an early, sharp increase in ILI physician visits, it
may be possible to focus additional resources on that region to
identify the aetiology of the outbreak, providing extra vaccine capa-
city or raising local media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-based dia-
gnoses and surveillance. Notable increases in ILI-related search activity
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Figure 1 | An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-
sample points during cross-validation was obtained by summing the top 45
search queries. A steep drop in model performance occurs after adding query
81, which is ‘oscar nominations’.

Table 1 | Topics found in search queries which were found to be most cor-
related with CDC ILI data

Search query topic Top 45 queries Next 55 queries
n Weighted n Weighted

Influenza complication 11 18.15 5 3.40
Cold/flu remedy 8 5.05 6 5.03
General influenza symptoms 5 2.60 1 0.07
Term for influenza 4 3.74 6 0.30
Specific influenza symptom 4 2.54 6 3.74
Symptoms of an influenza
complication

4 2.21 2 0.92

Antibiotic medication 3 6.23 3 3.17
General influenza remedies 2 0.18 1 0.32
Symptoms of a related disease 2 1.66 2 0.77
Antiviral medication 1 0.39 1 0.74
Related disease 1 6.66 3 3.77
Unrelated to influenza 0 0.00 19 28.37
Total 45 49.40 55 50.60

The top 45 queries were used in our final model; the next 55 queries are presented for
comparison purposes. The number of queries in each topic is indicated, as well as query-
volume-weighted counts, reflecting the relative frequency of queries in each topic.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.

 

 

2.5

5

0

2.5

5

0

2.5

5

0

2.5

IL
I p

er
ce

nt
ag

e

0

5
Data available as of 4 February 2008

Data available as of 3 March 2008

Data available as of 31 March 2008

Data available as of 12 May 2008

40 43 47 51 3
Week

7 11 15 19

Figure 3 | ILI percentages estimated by our model (black) and provided by
the CDC (red) in the mid-Atlantic region, showing data available at four
points in the 2007-2008 influenza season. During week 5 we detected a
sharply increasing ILI percentage in the mid-Atlantic region; similarly, on 3
March our model indicated that the peak ILI percentage had been reached
during week 8, with sharp declines in weeks 9 and 10. Both results were later
confirmed by CDC ILI data.
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Google	Flu	Trends:	the	results	(2)

Combining the n 5 45 highest-scoring queries was found to obtain
the best fit. These 45 search queries, although selected automatically,
appeared to be consistently related to ILIs. Other search queries in the
top 100, not included in our model, included topics like ‘high school
basketball’, which tend to coincide with influenza season in the
United States (Table 1).

Using this ILI-related query fraction as the explanatory variable,
we fit a final linear model to weekly ILI percentages between 2003 and
2007 for all nine regions together, thus obtaining a single, region-
independent coefficient. The model was able to obtain a good fit with
CDC-reported ILI percentages, with a mean correlation of 0.90
(min 5 0.80, max 5 0.96, n 5 9 regions; Fig. 2).

The final model was validated on 42 points per region of previously
untested data from 2007 to 2008, which were excluded from all
previous steps. Estimates generated for these 42 points obtained a
mean correlation of 0.97 (min 5 0.92, max 5 0.99, n 5 9 regions)
with the CDC-observed ILI percentages.

Throughout the 2007–08 influenza season we used preliminary
versions of our model to generate ILI estimates, and shared our
results each week with the Epidemiology and Prevention Branch of
Influenza Division at the CDC to evaluate timeliness and accuracy.
Figure 3 illustrates data available at different points throughout the
season. Across the nine regions, we were able to estimate consistently
the current ILI percentage 1–2 weeks ahead of the publication of
reports by the CDC’s US Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful for
public health planning, we sought to validate further our model

against weekly ILI percentages for individual states. The CDC does
not make state-level data publicly available, but we validated our
model against state-reported ILI percentages provided by the state
of Utah, and obtained a correlation of 0.90 across 42 validation points
(Supplementary Fig. 3).

Google web search queries can be used to estimate ILI percentages
accurately in each of the nine public health regions of the United
States. Because search queries can be processed quickly, the resulting
ILI estimates were consistently 1–2 weeks ahead of CDC ILI surveil-
lance reports. The early detection provided by this approach may
become an important line of defence against future influenza epi-
demics in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health officials
and health professionals to respond better to seasonal epidemics. If a
region experiences an early, sharp increase in ILI physician visits, it
may be possible to focus additional resources on that region to
identify the aetiology of the outbreak, providing extra vaccine capa-
city or raising local media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-based dia-
gnoses and surveillance. Notable increases in ILI-related search activity
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Figure 1 | An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-
sample points during cross-validation was obtained by summing the top 45
search queries. A steep drop in model performance occurs after adding query
81, which is ‘oscar nominations’.

Table 1 | Topics found in search queries which were found to be most cor-
related with CDC ILI data

Search query topic Top 45 queries Next 55 queries
n Weighted n Weighted

Influenza complication 11 18.15 5 3.40
Cold/flu remedy 8 5.05 6 5.03
General influenza symptoms 5 2.60 1 0.07
Term for influenza 4 3.74 6 0.30
Specific influenza symptom 4 2.54 6 3.74
Symptoms of an influenza
complication

4 2.21 2 0.92

Antibiotic medication 3 6.23 3 3.17
General influenza remedies 2 0.18 1 0.32
Symptoms of a related disease 2 1.66 2 0.77
Antiviral medication 1 0.39 1 0.74
Related disease 1 6.66 3 3.77
Unrelated to influenza 0 0.00 19 28.37
Total 45 49.40 55 50.60

The top 45 queries were used in our final model; the next 55 queries are presented for
comparison purposes. The number of queries in each topic is indicated, as well as query-
volume-weighted counts, reflecting the relative frequency of queries in each topic.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.
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Figure 3 | ILI percentages estimated by our model (black) and provided by
the CDC (red) in the mid-Atlantic region, showing data available at four
points in the 2007-2008 influenza season. During week 5 we detected a
sharply increasing ILI percentage in the mid-Atlantic region; similarly, on 3
March our model indicated that the peak ILI percentage had been reached
during week 8, with sharp declines in weeks 9 and 10. Both results were later
confirmed by CDC ILI data.
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Mean	Pearson	correlation	(r)	
for	the	9	regions,	r	=	0.97



4. More	regression	basics:	 
Regularised	regression



Limitations	of	least	squares	regressionRegression basics — Ordinary Least Squares (1/2)
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- May	be	singular,	thus	difficult	to	invert	
- High	dimensional	models	are	difficult	to	interpret	
- Unsatisfactory	prediction	accuracy	(estimates	

have	large	variance)



Regularised	regression:	Ridge

Regression basics — Ridge Regression (1/2)
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Pros	and	Cons	of	ridge	regression

+ size	constraint	on	the	weight	coefficients	
(regularisation);	resolves	problems	caused	by	
collinear	variables	

+ less	degrees	of	freedom;	often	better	predictive	
accuracy	than	OLS	regression	

- does	not	perform	feature	selection	(all	coefficients	
are	nonzero);	performance	could	be	improved

Regression basics — Ridge Regression (1/2)
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Regularised	regression:	Lasso	(1)
Regression basics — Lasso
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≠≠≠ no closed form solution — quadratic programming problem
+++ Least Angle Regression explores entire reg. path (Efron et al., 2004)

+++ sparse w

w

w, interpretability, better performance (Hastie et al., 2009)

≠≠≠ if m > n, at most n variables can be selected
≠≠≠ strongly corr. predictors æ model-inconsistent (Zhao & Yu, 2009)
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Regression basics — Ordinary Least Squares (1/2)
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also	known	as	L1-norm	regularisation



Pros	and	Cons	of	lasso

Regression basics — Lasso
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≠≠≠ no closed form solution — quadratic programming problem
+++ Least Angle Regression explores entire reg. path (Efron et al., 2004)

+++ sparse w

w

w, interpretability, better performance (Hastie et al., 2009)

≠≠≠ if m > n, at most n variables can be selected
≠≠≠ strongly corr. predictors æ model-inconsistent (Zhao & Yu, 2009)
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- no	closed	form	solution	(quadratic	optimisation	needed)	
+ Least	Angle	Regression	(LARS)	algorithm	explores	the	

entire	regularisation	path,	i.e.	all	values	for	λ	
+ w	tends	to	be	sparse	enhancing	both	the	interpretability	

of	a	model	and	providing	(often)	better	performance	
- if	m	>	n,	at	most	n	variables	can	be	selected,	i.e.	have	a	

nonzero	weight	
- collinear	predictors	(high	pair-wise	correlation)	may	lead	

to	inconsistent	models



5. Using	lasso	regression	to	map	Twitter	
data	to	an	influenza	rate	estimate

(Lampos	and	Cristianini,	2010)

http://www.lampos.net/publications/tracking-flu-pandemic-social-web


About	Twitter	(1)



About	Twitter	(2)

> 140	characters	per	published	status	(tweet)	
> users	can	follow	and	be	followed	
> embedded	usage	of	topics	(using	#hashtags)	
> user	interaction	(re-tweets,	@mentions,	likes)	
> real-time	nature	
> biased	demographics	(13-15%	of	UK’s	population)	
> information	is	noisy	and	not	always	accurate



Twitter	‘Flu	Trends’:	the	data
Twitter	
> 27	million	tweets	
> from	22/06/2009	to	06/12/2009	
> geolocated	in	the	UK  

centred	around	54	cities	(10	Km	radius)	

Health	surveillance	data	
> influenza-like	illness	(ILI)	rates	from	the	Health	

Protection	Agency	(now	Public	Health	England)	and	
the	Royal	College	of	General	Practitioners	(RCGP)	

> expressing	the	number	of	ILI	doctor	consultations	
per	100,000	citizens	in	the	population	for	various	
UK	regions



Twitter	‘Flu	Trends’:	the	methods	(1)
Is	there	a	signal	in	the	data?	

List	with	41	handpicked	keywords	related	to	flu	
e.g.	‘fever’,	‘runny	nose’,	‘sore	throat’,	‘headache’	etc.	
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Fig. 3: Comparison of the unweighted Twitter’s flu score
(based on our choice of markers) and the respective HPA rates
for region D (England & Wales) using their z-scores. Their
linear correlation is equal to 85.56%.

C. Learning HPA’s flu rates from Twitter flu-scores
We extend our previous scheme in order to form a model

for predicting the HPA flu rate by observing the flu-score on
Twitter. In the new scheme, we attach a weight wi to each
textual marker mi. The weighted flu-score of a tweet is equal
to:

sw(tj) =

∑
i wi ×mi(tj)

k
, (3)

where k denotes the number of markers. Similarly, the
weighted flu-score based on Twitter’s daily corpus T is
computed by:

fw(T ,M) =

∑
j sw(tj)

n
=

∑
j

∑
i wi ×mi(tj)

k × n
, (4)

where n denotes the total number of tweets for this day. The
contribution of each marker mi in fw can be considered as a
flu-subscore and is equal to:

fwi(T ,mi) = wi ×
∑

j mi(tj)

k × n
. (5)

Therefore, a daily Twitter’s flu-score can be
represented as a vector Fw of k elements Fw =
[fw1(T ,m1), ..., fwk(T ,mk)]T each one corresponding
to Twitter’s flu-subscore for marker mi.

Initially, we retrieve from the Twitter corpus of a day an
unweighted flu-score vector F = [f(T ,m1), ..., f(T ,mk)]T .
The unweighted time series of each term’s flu-subscores
(f(T ,mi) for all the days) are smoothed with a 7-point
moving average. We perform least squares linear regression
between the time series of F’s smoothed version and the
expanded and smoothed HPA’s flu rates in order to learn
the weights wi for the terms mi. We use as a training set
the data that correspond to one region, and then we test
the predictability of the inferred weights on the remaining
four regions. We perform this training/testing method for all
possible (five) training choices.

TABLE II: Linear regression using the markers of our choice
- An element (i, j) denotes the correlation coefficient between
the weighted flu-scores time series and HPA’s flu rates on
region j, after training the weights on region i. The p-value
for all the correlations is < 10e-32.

Train/Test A B C D E Avg.
A - 0.8389 0.9605 0.9539 0.9723 0.9314
B 0.7669 - 0.8913 0.9487 0.8896 0.8741
C 0.8532 0.702 - 0.8887 0.9445 0.8471
D 0.8929 0.9183 0.9388 - 0.9749 0.9312
E 0.9274 0.8307 0.9204 0.9749 - 0.9134

Total Avg. 0.8915

The linear correlation coefficient between the inferred and
the official time series for the HPA flu rates is used as the
performance indicator. The results are presented in Table II;
the correlation coefficients that were retrieved after training
on a region A-E are presented in the row A-E respectively.
The average performance over all possible training and testing
choices is equal to 89.15%. The p-values of all the presented
correlations indicate strong statistical significance (all of them
are < 10e-32). The maximum average performance is achieved
when using tweets from region A (Central England & Wales)
for training, and is equal to 93.14%; the linear correlation of
the flu-scores’ time series and the HPA flu rates for region
E by applying the weights learnt from region A is equal to
97.23%.

To assess the predictive power of the former result differ-
ently, we perform linear regression on the aggregated time
series of the flu-scores and HPA’s flu rates using the data
from all the regions. The data which belong in weeks 28
and 41 (during the peak and the stabilised period of the
epidemic respectively) form the test set; the remaining data
are used for training the weights. This results to a linear
correlation of 92.34% with a p-value of 5.61e-30 on the test
set. Additionally, we perform a 10-fold cross validation (1000
repeats, where the folds are randomly decided each time) using
again linear regression for learning. On average, we obtain a
linear correlation of 94.12% with a standard deviation equal
to 1.54%.

While in all cases the score was tested on unseen data, in
the first set of experiments we trained on data gathered on
one region, and then tested on the remaining regions, but on
the same period of time; in the last two experiments, using an
aggregation of our data sets, we carried out training and testing
on different times. Together these two sets of experiments,
provide strong support to the predictive power of the flu-score
we developed.

D. Automatic extraction of ILI textual markers
In the previous sections, we made use of hand crafted ILI

related textual markers. In this section, we present a method
for extracting weighted markers (or features) automatically.
The method selects a subset of keywords and their weights to
maximise the correlation with the HPA flu rates, while also

413

Compute	their	
aggregate	daily	
frequency	&	compare	
it	to	HPA	records	

r	=	0.82	to	0.86

region	D:		
England	&	Wales



Twitter	‘Flu	Trends’:	the	methods	(2)

Can	we	improve	the	obtained	correlations	by	learning	a	
weight	for	each	keyword	using	OLS	regression?	(Yes)
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Fig. 3: Comparison of the unweighted Twitter’s flu score
(based on our choice of markers) and the respective HPA rates
for region D (England & Wales) using their z-scores. Their
linear correlation is equal to 85.56%.

C. Learning HPA’s flu rates from Twitter flu-scores
We extend our previous scheme in order to form a model

for predicting the HPA flu rate by observing the flu-score on
Twitter. In the new scheme, we attach a weight wi to each
textual marker mi. The weighted flu-score of a tweet is equal
to:

sw(tj) =

∑
i wi ×mi(tj)

k
, (3)

where k denotes the number of markers. Similarly, the
weighted flu-score based on Twitter’s daily corpus T is
computed by:

fw(T ,M) =

∑
j sw(tj)

n
=

∑
j

∑
i wi ×mi(tj)

k × n
, (4)

where n denotes the total number of tweets for this day. The
contribution of each marker mi in fw can be considered as a
flu-subscore and is equal to:

fwi(T ,mi) = wi ×
∑

j mi(tj)

k × n
. (5)

Therefore, a daily Twitter’s flu-score can be
represented as a vector Fw of k elements Fw =
[fw1(T ,m1), ..., fwk(T ,mk)]T each one corresponding
to Twitter’s flu-subscore for marker mi.

Initially, we retrieve from the Twitter corpus of a day an
unweighted flu-score vector F = [f(T ,m1), ..., f(T ,mk)]T .
The unweighted time series of each term’s flu-subscores
(f(T ,mi) for all the days) are smoothed with a 7-point
moving average. We perform least squares linear regression
between the time series of F’s smoothed version and the
expanded and smoothed HPA’s flu rates in order to learn
the weights wi for the terms mi. We use as a training set
the data that correspond to one region, and then we test
the predictability of the inferred weights on the remaining
four regions. We perform this training/testing method for all
possible (five) training choices.

TABLE II: Linear regression using the markers of our choice
- An element (i, j) denotes the correlation coefficient between
the weighted flu-scores time series and HPA’s flu rates on
region j, after training the weights on region i. The p-value
for all the correlations is < 10e-32.

Train/Test A B C D E Avg.
A - 0.8389 0.9605 0.9539 0.9723 0.9314
B 0.7669 - 0.8913 0.9487 0.8896 0.8741
C 0.8532 0.702 - 0.8887 0.9445 0.8471
D 0.8929 0.9183 0.9388 - 0.9749 0.9312
E 0.9274 0.8307 0.9204 0.9749 - 0.9134

Total Avg. 0.8915

The linear correlation coefficient between the inferred and
the official time series for the HPA flu rates is used as the
performance indicator. The results are presented in Table II;
the correlation coefficients that were retrieved after training
on a region A-E are presented in the row A-E respectively.
The average performance over all possible training and testing
choices is equal to 89.15%. The p-values of all the presented
correlations indicate strong statistical significance (all of them
are < 10e-32). The maximum average performance is achieved
when using tweets from region A (Central England & Wales)
for training, and is equal to 93.14%; the linear correlation of
the flu-scores’ time series and the HPA flu rates for region
E by applying the weights learnt from region A is equal to
97.23%.

To assess the predictive power of the former result differ-
ently, we perform linear regression on the aggregated time
series of the flu-scores and HPA’s flu rates using the data
from all the regions. The data which belong in weeks 28
and 41 (during the peak and the stabilised period of the
epidemic respectively) form the test set; the remaining data
are used for training the weights. This results to a linear
correlation of 92.34% with a p-value of 5.61e-30 on the test
set. Additionally, we perform a 10-fold cross validation (1000
repeats, where the folds are randomly decided each time) using
again linear regression for learning. On average, we obtain a
linear correlation of 94.12% with a standard deviation equal
to 1.54%.

While in all cases the score was tested on unseen data, in
the first set of experiments we trained on data gathered on
one region, and then tested on the remaining regions, but on
the same period of time; in the last two experiments, using an
aggregation of our data sets, we carried out training and testing
on different times. Together these two sets of experiments,
provide strong support to the predictive power of the flu-score
we developed.

D. Automatic extraction of ILI textual markers
In the previous sections, we made use of hand crafted ILI

related textual markers. In this section, we present a method
for extracting weighted markers (or features) automatically.
The method selects a subset of keywords and their weights to
maximise the correlation with the HPA flu rates, while also
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Twitter	‘Flu	Trends’:	the	methods	(3)
What	if	we	made	our	feature	set	(keywords)	more	rich?	

+ Use	Wikipedia	pages	about	flu,	Patient	forums	(more	
informal	language),	expert	pages	(e.g.	NHS-based)	to	
expand	our	keywords	to	1,560	(from	41)	

+ Many	related	keywords	—	much	more	unrelated	
+ Stop	word	removal,	i.e.	basic	words	that	bear	no	

particular	meaning	are	removed,	e.g.	‘and’,	‘a’,	‘the’,	‘they’	
+ Porter	stemming	is	applied	to	normalise	word	endings,	

e.g.	both	‘happy’	and	‘happiness’	are	converted	to	‘happi’	
+ Lasso	regularised	regression	to	select	and	weight	subset	

of	keywords	for	capturing	an	ILI	rate



Twitter	‘Flu	Trends’:	the	results	(1)
Lasso	regression	on	the	extended	set	of	keywords	
seems	to	improve	average	performance	(r	=	0.9256)

minimising the size of the keyword set. It is formed of 2 parts:
creating a set of candidate features, and then selecting the most
informative ones.

At first, we create a pool of candidate markers from web
articles related to influenza. We use an encyclopedic reference4

as well as a more informal reference where potential flu
patients discuss their personal experiences5. After preprocess-
ing (tokenisation, stop-word removal), we extract a set of
K = 1560 stemmed candidate markers (1-grams). The latter
is denoted by MC = {mci}, i ∈ [1,K]. MC contains words
which form a very good description of the topic as well as
many irrelevant ones.

After forming the candidate features, we compute their
daily, regional, and unweighted flu-subscores f(Tr,mci) given
Tr which denotes the Twitter corpus for region r, r ∈ {A-E}.
For a day d, the flu score on Twitter is represented as a vector
Fd,r = [f(Tr,mc1) ... f(Tr,mcK)]T . Consequently, for a
region r and a period of ℓ days, we can form an array with the
time series of the flu-subscores for all the candidate features:
Xr = [F1,r ... Fℓ,r]T , where ℓ denotes the total number of
days considered. The columns of Xr, i.e. the time series of the
flu-subscores of each candidate feature, are smoothed using a
7-point moving average (as in the previous cases); the resulting
array is denoted as X(s)

r .
The expanded and smoothed time series of the HPA’s flu

rates for region r and for the same period of ℓ days are denoted
by the vector h(s)

r . At this point, one could use the correlation
coefficient between each column of X(s)

r and h(s)
r or other

linear regression methods (least squares, rigde regression, etc.)
in order to rank or learn weights for the candidate features.
For this purpose, the LASSO method has been chosen as it has
the advantage of producing sparse solutions, i.e. it will discard
candidate features which are proven to be redundant in terms
of predictability [8]. LASSO is an established method for
estimating least squares parameters subject to an L1 penalty.
It can be considered as a constrained optimisation task, which
in our case is formulated as

min
w

∥X(s)
r w − h(s)

r ∥22
s.t. ∥w∥1 ≤ t,

(6)

where vector w is the sparse solution, and t is the shrinkage
parameter. The shrinkage parameter can be expressed as

t = α× ∥w(ls)∥1, (7)

where w(ls) denotes the least squares estimates for our regres-
sion problem, and α ∈ (0, 1) is the shrinkage percentage.

We use time series of a region ri ∈ {A-E} as the training
set, the time series of a region rj ∈ {{A-E}− ri} as the
validation set for deciding the optimal shrinkage percentage
α, and we test on the data of the remaining three regions. We
repeat this procedure for all possible five training set choices.
LARS algorithm is applied to compute LASSO’s estimates

4Influenza on Wikipedia, http://en.wikipedia.org/wiki/Influenza.
5Swine Flu on NHS (with potential patients comments), http://www.nhs.

uk/Conditions/pandemic-flu/Pages/Symptoms.aspx.

TABLE III: Linear correlations on the test sets after per-
forming the LASSO - An element (i, j) denotes the average
correlation coefficient on the three remaining regions, after
performing LASSO on region i in order to learn the weights,
and validating the shrinkage parameter t on region j.

Train/Validate A B C D E
A - 0.9594 0.9375 0.9348 0.9297
B 0.9455 - 0.9476 0.9267 0.9003
C 0.9154 0.9513 - 0.8188 0.908
D 0.9463 0.9459 0.9424 - 0.9337
E 0.8798 0.9506 0.9455 0.8935 -

Total Avg. 0.9256

TABLE IV: 97 stemmed markers extracted by applying
LASSO regionally. The markers are sorted in a descending
order based on their weights (read horizontally, starting from
the top-left corner).

lung unwel temperatur like headach season
unusu chronic child dai appetit stai

symptom spread diarrhoea start muscl weaken
immun feel liver plenti antivir follow

sore peopl nation small pandem pregnant
thermomet bed loss heart mention condit

high group tired import risk carefulli
work short stage page diseas recognis
servic wors case similar term home
increas exist ill sens counter better
cough vomit earli neurolog catch onlin
fever concern check drink long far

consid ach breath flu member kidnei
mild number sick throat famili water
read includ swine confirm need nose

medic phone cancer disord unsur suddenli
runni

[9]. The results of our method are captured in Table III. Most
of the possible training/validating choices lead to high linear
correlations. The average linear correlation over all possible
settings is 92.56% indicating the robustness of our method.
The experiments showed that the optimal choice was to train
on region A and use region B for validating α, leading to an
average correlation of 95.94% on the remaining three regions
(C-E) (for a shrinkage percentage α equal to 87%). Figures
4(a), 4(b), and 4(c) show a comparison between the inferred
and HPA’s flu rates time series on regions C-E respectively
(for the optimal choice). The learnt weights vector w had
97 non-zero values, i.e. we were able to extract 97 markers
(or features), which, in turn, are presented in Table IV. The
majority of the markers is pointing directly or indirectly to
illness related vocabulary.

We also assess the performance of our method differently,
following the same principle as in the previous section. We
aggregate our regional data sets X(s)

r and h(s)
r , and as before,

we form a test set by using the data for weeks 28 and 41, a
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Train	on	one	region,	validate	λ	(regularisation	parameter)	on	
another,	test	performance	on	the	remaining	regions



Twitter	‘Flu	Trends’:	the	results	(2)
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(a) Region C - Correlation: 93.49% (p-value: 1.39e-76)
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(b) Region D - Correlation: 96.77% (p-value: 2.98e-101)
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(c) Region E - Correlation: 97.55% (p-value: 3.85e-111)
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(d) Inference on the aggregated data set for weeks 28 and 41 - Correlation:
97.13% (p-value: 3.96e-44)

Fig. 4: Comparison of the inferred versus the HPA’s flu rates, after using LASSO method for learning. Figures 4(a), 4(b), and
4(c) present the results for the regional experiment (training on one region, validating on another, and testing on the remaining
three), whereas 4(d) shows the results for the aggregated sets (5 partitions of a 14-day period each from left to right correspond
to the results for regions A-E respectively). Note that for subfigure 4(d) the ‘Days’ axis does not denote yearly day numbers.

validation set (for deciding the optimal value of the shrinkage
percentage α) by using weeks 36 and 49, and a training set
with the remaining data sets. The outcome of the experiment
indicates that the optimal value for α is 0.0049; for this value
we retrieve a linear correlation of 97.13% (p-value is equal to
3.96e-44) on the test set. The corresponding vector of weights
w has 73 non-zero features which are shown in Table V. Only
one of them (the stemmed word ‘pleas’) was not included in
the previously extracted set of features. Figure 4(d) presents
a comparison of the inferred versus the HPA’s flu rates for
all the test points. Again, we have demonstrated how a list
of markers can be automatically inferred from a large set of
candidates by using a supervised learning algorithm and HPA’s
index as the target signal; this approach delivers a correlation
greater than 97% with the target signal on unseen data.

IV. RELATED WORK

Similar studies have been performed using the content of
web search queries. In [10] the frequency of influenza-related
queries on Yahoo! search engine has been proven to be corre-
lated with influenza and mortality rates in the United States,
whereas in [5] a representative set of user search queries has
been extracted by applying a linear regression fit with official
health reports, achieving on average a linear correlation of
90%. Similarly, user queries on a Swedish medical website
have been used to learn ILI rates in Sweden [11].

Our study makes use of independent data, and hence can be
used both as an alternative source of information, or combined
with other data sources (or methods), to achieve an even higher
accuracy. Used in a stand-alone manner, our method can be

TABLE V: 73 stemmed markers extracted by applying LASSO
on the aggregated data set of regions A-E. The markers are
sorted in a descending order based on their weights (read
horizontally, starting from the top-left corner). 72 of them
have also occurred in Table IV but here the order (i.e. the
corresponding weights) is different.

muscl like appetit read unwel child
work follow season page throat nose
check suddenli pleas immun phone swine
sick dai symptom consid sens breath

cough loss recognis peopl number mild
home condit mention servic runni member
wors diseas diarrhoea high short onlin

pregnant small exist headach unsur cancer
stai concern fever earli tired carefulli

import weaken nation famili similar temperatur
feel ach flu case sore unusu

spread vomit ill thermomet pandem increas
stage far

considered as more reliable since it performs better than the
aforementioned ones.

Other recent studies have attempted to extract epidemic
information from textual data streams originating in social
media, mostly “traditional” blogs, but also Twitter. The study
reported in [12] deals with a similar question to ours, but with
the important difference that it is based on blogs (where ge-
olocation is not very accurate) and simply counts occurrences
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Twitter	‘Flu	Trends’:	the	results	(3)

minimising the size of the keyword set. It is formed of 2 parts:
creating a set of candidate features, and then selecting the most
informative ones.

At first, we create a pool of candidate markers from web
articles related to influenza. We use an encyclopedic reference4

as well as a more informal reference where potential flu
patients discuss their personal experiences5. After preprocess-
ing (tokenisation, stop-word removal), we extract a set of
K = 1560 stemmed candidate markers (1-grams). The latter
is denoted by MC = {mci}, i ∈ [1,K]. MC contains words
which form a very good description of the topic as well as
many irrelevant ones.

After forming the candidate features, we compute their
daily, regional, and unweighted flu-subscores f(Tr,mci) given
Tr which denotes the Twitter corpus for region r, r ∈ {A-E}.
For a day d, the flu score on Twitter is represented as a vector
Fd,r = [f(Tr,mc1) ... f(Tr,mcK)]T . Consequently, for a
region r and a period of ℓ days, we can form an array with the
time series of the flu-subscores for all the candidate features:
Xr = [F1,r ... Fℓ,r]T , where ℓ denotes the total number of
days considered. The columns of Xr, i.e. the time series of the
flu-subscores of each candidate feature, are smoothed using a
7-point moving average (as in the previous cases); the resulting
array is denoted as X(s)

r .
The expanded and smoothed time series of the HPA’s flu

rates for region r and for the same period of ℓ days are denoted
by the vector h(s)

r . At this point, one could use the correlation
coefficient between each column of X(s)

r and h(s)
r or other

linear regression methods (least squares, rigde regression, etc.)
in order to rank or learn weights for the candidate features.
For this purpose, the LASSO method has been chosen as it has
the advantage of producing sparse solutions, i.e. it will discard
candidate features which are proven to be redundant in terms
of predictability [8]. LASSO is an established method for
estimating least squares parameters subject to an L1 penalty.
It can be considered as a constrained optimisation task, which
in our case is formulated as

min
w

∥X(s)
r w − h(s)

r ∥22
s.t. ∥w∥1 ≤ t,

(6)

where vector w is the sparse solution, and t is the shrinkage
parameter. The shrinkage parameter can be expressed as

t = α× ∥w(ls)∥1, (7)

where w(ls) denotes the least squares estimates for our regres-
sion problem, and α ∈ (0, 1) is the shrinkage percentage.

We use time series of a region ri ∈ {A-E} as the training
set, the time series of a region rj ∈ {{A-E}− ri} as the
validation set for deciding the optimal shrinkage percentage
α, and we test on the data of the remaining three regions. We
repeat this procedure for all possible five training set choices.
LARS algorithm is applied to compute LASSO’s estimates

4Influenza on Wikipedia, http://en.wikipedia.org/wiki/Influenza.
5Swine Flu on NHS (with potential patients comments), http://www.nhs.

uk/Conditions/pandemic-flu/Pages/Symptoms.aspx.

TABLE III: Linear correlations on the test sets after per-
forming the LASSO - An element (i, j) denotes the average
correlation coefficient on the three remaining regions, after
performing LASSO on region i in order to learn the weights,
and validating the shrinkage parameter t on region j.

Train/Validate A B C D E
A - 0.9594 0.9375 0.9348 0.9297
B 0.9455 - 0.9476 0.9267 0.9003
C 0.9154 0.9513 - 0.8188 0.908
D 0.9463 0.9459 0.9424 - 0.9337
E 0.8798 0.9506 0.9455 0.8935 -

Total Avg. 0.9256

TABLE IV: 97 stemmed markers extracted by applying
LASSO regionally. The markers are sorted in a descending
order based on their weights (read horizontally, starting from
the top-left corner).

lung unwel temperatur like headach season
unusu chronic child dai appetit stai

symptom spread diarrhoea start muscl weaken
immun feel liver plenti antivir follow

sore peopl nation small pandem pregnant
thermomet bed loss heart mention condit

high group tired import risk carefulli
work short stage page diseas recognis
servic wors case similar term home
increas exist ill sens counter better
cough vomit earli neurolog catch onlin
fever concern check drink long far

consid ach breath flu member kidnei
mild number sick throat famili water
read includ swine confirm need nose

medic phone cancer disord unsur suddenli
runni

[9]. The results of our method are captured in Table III. Most
of the possible training/validating choices lead to high linear
correlations. The average linear correlation over all possible
settings is 92.56% indicating the robustness of our method.
The experiments showed that the optimal choice was to train
on region A and use region B for validating α, leading to an
average correlation of 95.94% on the remaining three regions
(C-E) (for a shrinkage percentage α equal to 87%). Figures
4(a), 4(b), and 4(c) show a comparison between the inferred
and HPA’s flu rates time series on regions C-E respectively
(for the optimal choice). The learnt weights vector w had
97 non-zero values, i.e. we were able to extract 97 markers
(or features), which, in turn, are presented in Table IV. The
majority of the markers is pointing directly or indirectly to
illness related vocabulary.

We also assess the performance of our method differently,
following the same principle as in the previous section. We
aggregate our regional data sets X(s)

r and h(s)
r , and as before,

we form a test set by using the data for weeks 28 and 41, a
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6. Further	regression	basics:	Elastic	net	
and	Gaussian	Processes	in	a	nutshell



Regularised	regression:	the	elastic	net

Regression basics — Elastic Net
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[Linear] Elastic Net (LEN)
(Zhou & Hastie, 2005)
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+++ ‘compromise’ between ridge regression (handles collinear
predictors) and lasso (favours sparsity)

+++ entire reg. path can be explored by modifying LAR
+++ if m > n, number of selected variables not limited to n

≠≠≠ may select redundant variables!
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Regression basics — Ordinary Least Squares (1/2)
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elastic	net	combines	L2-norm	(ridge)		
and	L1-norm	(lasso)	regularisation



Pros	and	Cons	of	elastic	net

Regression basics — Elastic Net
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+ ‘compromise’	between	ridge	regression	(handles	 
collinear	predictors)	and	lasso	(favours	sparsity)	

+ entire	regularisation	path	can	be	explored	by	modifying 
LARS	algorithm	

+ if	m	>	n,	#	of	selected	variables	is	not	limited	to	n	

- it	may	select	redundant	variables	
- has	two	regularisation	parameters	to	validate	(although 

there	are	ways	to	mitigate	this,	e.g.	by	setting	λ1	=	αλ2)



Nonlinearities	in	the	data	(1)

Figure S3. Pairwise relationship of query frequency and ILI rates with (right) and without (left) logit transformation; the
query used to draw these plots is ‘dry cough’. Axes have been normalized from 0 to 1.

Figure S4. Nonlinearities present in the relationship between ILI and two example queries selected by the Elastic Net with
(right) and without (left) the logit transformation. Axes have been normalized from 0 to 1. A: ‘sex linked traits’. B: ‘sore throat
remedies’.
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Nonlinearities	in	the	data	(2)

Figure S3. Pairwise relationship of query frequency and ILI rates with (right) and without (left) logit transformation; the
query used to draw these plots is ‘dry cough’. Axes have been normalized from 0 to 1.

Figure S4. Nonlinearities present in the relationship between ILI and two example queries selected by the Elastic Net with
(right) and without (left) the logit transformation. Axes have been normalized from 0 to 1. A: ‘sex linked traits’. B: ‘sore throat
remedies’.
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‘dry	cough’	(Google)
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Gaussian	Processes	(GPs)

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

C
w

=

P
x2c NPMI(w, x)

|c|� 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs xxx 2 Rd:

f(x

x

x) ⇠ GP(m(x

x

x), k(x

x

x,x

x

x

0
)) , (3)

where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx0), this is:

kard(xxx,xxx
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, (4)

where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(xxx) , P(y = 1|xxx) = �(f(x

x

x))

in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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Based	on	d-dimensional	input	data

we	want	to	learn	a	function

mean	function	
drawn	on	inputs

covariance	function	(or	kernel)	
drawn	on	pairs	of	inputs

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}

Formally:	Sets	of	random	variables	any	finite	number	
of	which	have	a	multivariate	Gaussian	distribution



Gaussian	Processes	(GPs)
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Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)

x

2σ

µ

∫ ∞

−∞
N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

C
w

=

P
x2c NPMI(w, x)

|c|� 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3
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http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs xxx 2 Rd:
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)) , (3)

where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx0), this is:
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(xxx) , P(y = 1|xxx) = �(f(x

x
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in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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Based	on	d-dimensional	input	data

we	want	to	learn	a	function

Formally:	Sets	of	random	variables	any	finite	number	
of	which	have	a	multivariate	Gaussian	distribution

mean	function	
drawn	on	inputs

covariance	function	(or	kernel)	
drawn	on	pairs	of	inputs



Common	covariance	functions	(kernels)

2 Expressing Structure with Kernels

functions are likely under the GP prior, which in turn determines the generalization
properties of the model.

1.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 1.1.

Kernel name: Squared-exp (SE) Periodic (Per) Linear (Lin)
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Figure 1.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a di�erent set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly di�erent assumptions
about the smoothness of the function being modeled.

Kernel parameters Each kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of
being parameters which specify a function directly. An example would be the lengthscale



Combining	kernels	in	a	GP

4 Expressing Structure with Kernels

Lin ◊ Lin SE ◊ Per Lin ◊ SE Lin ◊ Per
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0
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quadratic functions locally periodic increasing variation growing amplitude

Figure 1.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 1.1.

1.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 1.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple
parametric form. Here, we discuss a few examples:

• Polynomial Regression. By multiplying together T linear kernels, we obtain a
prior on polynomials of degree T . The first column of figure 1.2 shows a quadratic
kernel.

• Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per◊SE corresponds to locally
periodic structure, as shown in the second column of figure 1.2.

• Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter c. The third and fourth columns
of figure 1.2 show two examples.

it	is	possible	to	add	or	multiply	kernels	
(among	other	operations)



GPs	for	regression:	An	example	(1)
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GPs	for	regression:	An	example	(2)
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More	information	about	GPs
+ Book	—	“Gaussian	Processes	for	Machine	Learning”  

http://www.gaussianprocess.org/gpml/	

+ Tutorial	—	“Gaussian	Processes	for	Natural	Language	
Processing”  
http://people.eng.unimelb.edu.au/tcohn/tutorial.html	

+ Video-lecture	—	“Gaussian	Process	Basics”  
http://videolectures.net/gpip06_mackay_gpb/	

+ Software	I	—	GPML	for	Octave	or	MATLAB 
http://www.gaussianprocess.org/gpml/code	

+ Software	II	—	GPy	for	Python 
http://sheffieldml.github.io/GPy/

http://www.gaussianprocess.org/gpml/
http://people.eng.unimelb.edu.au/tcohn/tutorial.html
http://videolectures.net/gpip06_mackay_gpb/
http://www.gaussianprocess.org/gpml/code
http://sheffieldml.github.io/GPy/


7. Improving	the	Google	Flu	Trends	
modelling	approach

(Lampos,	Miller,	Crossan	and	Stefansen,	2015)

http://www.nature.com/articles/srep12760


Failures	of	the	previous	modelling
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Algorithm Dynamics
All empirical research stands on a founda-
tion of measurement. Is the instrumentation 
actually capturing the theoretical construct of 
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum, 
it is quite likely that GFT was an unstable 
refl ection of the prevalence of the fl u because 
of algorithm dynamics affecting Google’s 
search algorithm. Algorithm dynamics are 
the changes made by engineers to improve 
the commercial service and by consum-
ers in using that service. Several changes in 
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most 
common explanation for GFT’s error is a 
media-stoked panic last fl u season ( 1,  15). 
Although this may have been a factor, it can-
not explain why GFT has been missing high 
by wide margins for more than 2 years. The 
2009 version of GFT has weathered other 
media panics related to the fl u, including the 
2005–2006 influenza A/H5N1 (“bird flu”) 
outbreak and the 2009 A/H1N1 (“swine fl u”) 
pandemic. A more likely culprit is changes 
made by Google’s search algorithm itself.

The Google search algorithm is not a 
static entity—the company is constantly 
testing and improving search. For example, 
the offi cial Google search blog reported 86 
changes in June and July 2012 alone (SM). 
Search patterns are the result of thousands of 
decisions made by the company’s program-
mers in various subunits and by millions of 
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never 
documented the 45 search terms used, and 
the examples that have been released appear 
misleading ( 14) (SM). Google does provide 
a service, Google Correlate, which allows 
the user to identify search data that correlate 
with a given time series; however, it is lim-
ited to national level data, whereas GFT was 
developed using correlations at the regional 
level ( 13). The service also fails to return any 
of the sample search terms reported in GFT-
related publications ( 13,  14).

Nonetheless, using Google Correlate to 
compare correlated search terms for the GFT 
time series to those returned by the CDC’s 
data revealed some interesting differences. In 
particular, searches for treatments for the fl u 
and searches for information on differentiat-
ing the cold from the fl u track closely with 
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data 
(and thus user utilization) has been modi-

fi ed by the service provider in accordance 
with their business model. Google reported 
in June 2011 that it had modifi ed its search 
results to provide suggested additional search 
terms and reported again in February 2012 
that it was now returning potential diagnoses 
for searches including physical symptoms 
like “fever” and “cough” ( 21,  22). The for-
mer recommends searching for treatments 
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase 
in some searches to distinguish the fl u from 
the common cold. We document several other 
changes that may have affected GFT (SM).

In improving its service to customers, 
Google is also changing the data-generating 
process. Modifications to the search algo-
rithm are presumably implemented so as to 
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more 
advertising revenue. Recommended searches, 
usually based on what others have searched, 
will increase the relative magnitude of certain 
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely 
affect GFT’s estimates. Oddly, GFT bakes in 
an assumption that relative search volume for 
certain terms is statically related to external 

events, but search behavior is not just exog-
enously determined, it is also endogenously 
cultivated by the service provider.

Blue team issues are not limited to 
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and 
whether studies conducted even a year ago 
on data collected from these platforms can 
be replicated in later or earlier periods is an 
open question.

Although it does not appear to be an issue 
in GFT, scholars should also be aware of the 
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur 
when research subjects (in this case Web 
searchers) attempt to manipulate the data-
generating process to meet their own goals, 
such as economic or political gain. Twitter 
polling is a clear example of these tactics. 
Campaigns and companies, aware that news 
media are monitoring Twitter, have used 
numerous tactics to make sure their candidate 
or product is trending ( 23,  24).

Similar use has been made of Twitter 
and Facebook to spread rumors about stock 
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of 
information, the more tempting it will be to 
manipulate those signals.
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GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the 
actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly 
high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 
52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates, 
lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC 
estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone. 
Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 
for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.

The	estimates	of	the	online	Google	Flu	Trends	tool	were	
approx.	two	times	larger	than	the	ones	from	CDC



Hypotheses	for	failure
+ ‘Big	Data’	are	not	always	good	enough;	may	not	always	

capture	the	target	signal	properly	
+ The	estimates	were	based	on	a	rather	simplistic	model	
+ The	model	was	OK,	but	some	spurious	search	queries	

invalidated	the	ILI	inferences,	e.g.	‘flu	symptoms’	
+ Media	hype	about	the	topic	of	‘flu’	significantly	increased	

the	search	query	volume	from	people	that	were	just	
seeking	information	(non	patients)	

+ (Side	note:	CDC’s	estimates	are	not	necessarily	the	
ground	truth;	they	can	also	go	wrong	sometimes,	
although	we	will	assume	that	they	are	generally	a	good	
representation	of	the	real	signal)



Google	Flu	Trends	revised:	the	data	(1)

Google	search	query	logs	
> geo-located	in	US	regions	
> from	4	Jan.	2004	to	28	Dec.	2013	(521	weeks,	~decade)	
> filtered	by	a	very	relaxed	health-topic	classifier	
> intersection	among	frequently	occurring	search	

queries	in	all	US	regions	
> weekly	frequencies	of	49,708	queries	(#	of	features)	
> all	data	have	been	anonymised	and	aggregated	

plus	corresponding	ILI	rates	from	the	CDC



Google	Flu	Trends	revised:	the	data	(2)

Corresponding	ILI	rates	from	the	CDC

Number of clusters r MAE⇥102 MAPE (%)

1 .91 .273 12.3
2 .92 .266 12.2
4 .93 .243 11.4
6 .92 .246 11.6
8 .94 .236 11.7
10 .95 .221 10.8
12 .94 .234 11.2

Table S3. Cumulative performance (2008-2013) of GP model with various numbers of clusters.

Covariance function r MAE⇥102 MAPE (%)

SE .95 .221 10.8
Matérn .95 .228 11

Table S4. Performance comparison of the optimal GP model (10 clusters) when a different covariance function (Matérn) is
used.

Figure S1. CDC ILI rates for the US covering 2004 to 2013, i.e., the time span of the data used in our experimental process.
Flu periods are distinguished by color.

Figure S2. Comparison of query-only predictions for all investigated models during the flu season 2008-09 (omitted from
main text for space reasons).

5/10

different	colouring	per	flu	season
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r>a Elastic	Net

Google	search	query	
frequencies	(Q)

Historical	CDC		
ILI	data

k-means

k1

k2

k3

kN

…

+ GP(μ,k)
Q’≤Q Q’’≤Q’

ILI	inference



Google	Flu	Trends	revised:	the	methods	(2)

1. Keep	search	queries	with	r	≥	0.5	(reduces	the	amount	
of	irrelevant	queries)	

2. Apply	the	previous	model	(GFT)	to	get	a	baseline	
performance	estimate	

3. Apply	elastic	net	to	select	a	subset	of	search	queries	
and	compute	another	baseline	

4. Group	the	selected	queries	into	N	=	10	clusters	using	 
k-means	to	account	for	their	different	semantics	

5. Use	a	different	GP	covariance	function	on	top	of	each	
query	cluster	to	explore	non-linearities



Google	Flu	Trends	revised:	the	methods	(3)
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where λ1, λ2 are the regularization parameters (see SI, Parameter learning in the Elastic Net). Compared 
to Lasso, Elastic Net often selects a broader set of relevant queries24.

Exploring nonlinearities with Gaussian Processes. The majority of methods for modeling infec-
tious diseases via user-generated content are based on linear methods10,13,14 ignoring the presence of 
possible nonlinearities in the data (see Supplementary Fig. S4). Recent findings in natural language pro-
cessing applications suggest that nonlinear frameworks, such as the Gaussian Processes (GPs), can 
improve predictive performance, especially in cases where the feature space is moderately-sized28,29. GPs 
are sets of random variables, any finite number of which have a multivariate Gaussian distribution30. In 
GP regression, for the inputs x, ′ ∈ �x Q (both expressing rows of the query matrix X) we want to learn 
a function →� �f : Q  that is drawn from a GP prior, f (x) ∼ GP (µ(x), k (x, x′ )), where µ(x) and k(x, 
x′ ) denote the mean and covariance (or kernel) functions respectively. Our models assume that µ(x) =  0 
and use the Squared Exponential (SE) covariance function, defined by

σ′
′
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2 3
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2
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where A is known as the length-scale parameter and σ2 is a scaling constant that represents the overall 
variance. Note that A is inversely proportional to the relevancy of the feature space. Different kernels have 
been applied, such as the the Matérn31, but did not yield any performance improvements (see 
Supplementary Table S4). In the GP framework, predictions are conducted through 

( ) ( )∫, = , ( )⁎ ⁎ ⁎ ⁎X Xy y f fx xP P Pf
, where y* is the target variable, X the set observations used for 

training, and x* the current observation. Parameter learning is performed by minimizing the negative 
log-marginal likelihood of ( )XyPr , where y denotes the ILI rates used for training.

The proposed GP model is applied on the queries previously selected by the Elastic Net. However, 
instead of modeling each query separately or all queries as a whole, we first cluster queries into groups 
based on a similarity metric and then apply a composite GP kernel on clusters of queries. Given a par-
tition of the search queries = , …,x c c{ }C1 , where ci denotes the subset of queries clustered in group i, 
we define the GP covariance function to be
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where C denotes the number of clusters, kSE has a different set of hyperparameters (σ, A) per group, and 
the second term of the equation models noise (δ being a Kronecker delta function). We extract a clus-
tered representation of queries by applying the k-means+ +  algorithm32,33 (see SI, Gaussian Process train-
ing details). The distance metric of k-means uses the cosine similarity between time series of queries to 
account for the different magnitudes of the query frequencies in our data34. It is defined by 
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 denotes a column of the input matrix X.

By focusing on sets of queries, the proposed method can protect an inferred model from radical 
changes in the frequency of single queries that are not representative of an entire cluster. For example, 
media hype about a disease may trigger queries expressing a general concern rather than a self-infection. 
These queries are expected to utilize a small subset of specific key-phrases, but not the entirety of a 
cluster related to flu infection. In addition, assuming that query clusters may convey different thematic 
‘concepts’, related to flu, other health topics or even expressing seasonal patterns, our learning algorithm 
will be able to model the contribution of each of these concepts to the final prediction. From a statistical 
point of view, GP regression with an additive covariance function can be viewed as learning a sum of 
lower-dimensional functions, = + … +f f f C1 , one for each cluster. As these functions have signifi-
cantly smaller input space ( < Qci , for ∈ , …,i C{1 }), the learning task becomes much easier, requiring 
fewer samples and giving us more statistical traction. However, this imposes the assumption that the 
relationship between queries in separate clusters provides no information about ILI, which we believe is 
reasonable.

Denoting all ILI observations as = ( , …, )y yy T1 , our GP regression objective is defined by the min-
imization of the following negative log-marginal likelihood function

µ µ(( − ) ( − ) + ( )),
( )σ σ σ,…, , ,…, ,

−

A A

Тy K y Kargmin log
5

1

C C1 1 n

where K is the matrix of covariance function evaluations at all pairs of inputs, (K)i,j =  k(xi, xj), and µ is 
similarly defined as µ µ µ= ( ( ), …, ( ))x xT1 . Given features from a new week, x*, predictions are con-
ducted by computing the mean value of the posterior predictive distribution, E[y*|y, X, x*], and predictive 
uncertainty is estimated by the posterior predictive variance, V[y*|y, X, x*]30.

+ protect	a	model	from	radical	changes	in	the	frequency	of	
single	queries	that	are	not	representative	of	a	cluster	

+ model	the	contribution	of	various	thematic	concepts	
(captured	by	different	clusters)	to	the	final	prediction	

+ learning	a	sum	of	lower-dimensional	functions:	significantly	
smaller	input	space,	much	easier	learning	task,	fewer	
samples	required,	more	statistical	traction	obtained	

- imposes	the	assumption	that	the	relationship	between	
queries	in	separate	clusters	provides	no	information	about	
ILI	(reasonable	trade-off)
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and actual ILI rates (Supplementary Fig. S2 shows the results for 2008–09). Further details, such as the 
number of selected or nonzero weighted queries per case and model are shown in Supplementary Table 
S2. Evidently, the GP model outperforms both GFT and Elastic Net models. Using an aggregation of all 
inferences and the MAPE loss function, we see that Elastic Net yields an absolute performance improve-
ment of 8.5% (relative improvement of 41.7%) in comparison to GFT. The GP model in comparison to 
Elastic Net improves predictions further by 1.1% (relative improvement of 9.2%). We also observe that 
both Elastic Net and GP models cannot capture the ILI rate during the peak of the flu season for 2009–
10, whereas the GFT model over-predicts it. This could be a consequence of the the fact that 2009–10 
was a unique flu period, as it is the only set of points expressing a pandemic in our data (H1N1 swine 
flu pandemic).

By measuring the influence of individual queries or clusters in each nowcast, we conduct a qualitative 
evaluation of the models, aiming to interpret some prediction errors. Our influence metric computes the 
contribution of a query or a cluster of queries by comparing a normal prediction outcome with an output 
had this query or cluster been absent from the input data (see SI, Estimation of query and cluster influ-
ence in nowcasts). The GFT model is very unstable across the different flu seasons, sometimes exhibiting 
the smallest error (season 2009–10), and other times severely mispredicting ILI rates (seasons 2008–09, 
2010–11 and 2011–12). Through an examination of a 21-week period (04/12/2011 to 28/04/2012), where 
major over-predictions occur (see Fig.  1C), and the estimation of the percentage of influence for each 
query in the weekly predictions, we deduced that queries unrelated to influenza were responsible for 
major portions of the final prediction. The query ‘rsv’ (where RSV stands for Respiratory Syncytial Virus) 
accounts on average for 24.5% of the signal, overtaking the only clearly flu-related query with a signif-
icant representation (‘flu symptoms’ expressing 17.5% of the signal); the top five most influential que-
ries also include ‘benzonatate’ (6.2%), ‘symptoms of pneumonia’ (6%) and ‘upper respiratory infection’ 
(3.9%), all of which are either not related to or may have an ambiguous contribution to ILI. Hence, the 
predictions were primarily influenced by content related to other types of diseases or generic concern, 
something that resulted in an over-prediction of ILI rates. For the same 21-week period, we performed 
a similar analysis on the features from the significantly better performing Elastic Net model. Firstly, the 
influence of each query is less concentrated, something expected given the increased number of nonzero 
weighted queries forming up the model (316 queries in Elastic Net vs. 66 in GFT). The features with 
the largest contribution were ‘ear thermometer’ (3.1%), ‘musinex’ (2.4%)—a misspelling of the ‘mucinex’ 
medicine, ‘how to break a fever’ (2.2%), ‘flu like symptoms’ (2.1%) and ‘fever reducer’ (2%), all of which 
may have direct or indirect connections to ILI. Note that none of the top five GFT features received a 
nonzero weight by Elastic Net, hinting that the latter model provided a probably better feature selection 
in this specific case.

Figure 1. Graphical comparison between ILI nowcasts based on query-only models and the ILI rates 
published by CDC. (A–D): Flu seasons 2009–10, 2010–11, 2011–12 and 2012–13 respectively.
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‘rsv’	—	25%	
‘flu	symptoms’	—	18%	
‘benzonatate’	—		6%	

‘symptoms	of	pneumonia’	—		6%	
‘upper	respiratory	infection’	—		4%

impact	of	automatically	selected	queries	in	
a	flu	estimate	during	the	over-predictions

previous	GFT	model
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elastic	net ‘ear	thermometer’	—	3%	
‘musinex’	—	2%	

‘how	to	break	a	fever’	—	2%	
‘flu	like	symptoms’	—	2%	

‘fever	reducer’	—	2%

impact	of	automatically	selected	queries	in	
a	flu	estimate	during	the	over-predictions



8. Assessing	the	impact	of	a	health	
intervention	using	Internet	data

(Lampos,	Yom-Tov,	Pebody	and	Cox,	2015)

http://www.nature.com/articles/srep12760


Intervention	impact:	the	idea

disease	rates	in	the	population
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Health	intervention	
e.g.	a	vaccination	campaign

disease	rates	in	the	population



Intervention	impact:	the	idea

Health	intervention	
e.g.	a	vaccination	campaign

disease	rates	in	the	population

impact ?



Intervention	impact:	the	data
308	million	tweets	exactly	geolocated	in	England	
2	May	2011	to	13	Apr.	2014	(154	weeks)	

Query	frequencies	from	Bing,	geolocated	in	England	
31	Dec.	2012	to	13	Apr.	2014	(67	weeks)	
generally	larger	numbers	from	the	Twitter	data	

ILI	rates	for	England	obtained	from	Public	Health	England
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Intervention	impact:	the	methods	(1)

Feature	extraction	was	performed	as	follows:	

+ Start	with	a	manually	crafted	seed	list	of	36	textual	
markers,	e.g.	flu,	headache,	doctor,	cough	

+ Extract	frequent	co-occurring	n-grams	from	a	corpus	of	30	
million	UK	tweets	(February	&	March,	2014)	after	removing	
stop-words	

+ Set	of	markers	expanded	to	205	n-grams	(n	≤	4)  
e.g.	#flu,	#cough,	annoying	cough,	worst	sore	throat		

+Relatively	small	set	of	features	motivated	by	previous	work



Intervention	impact:	the	methods	(2)

Supplementary Material for “Assessing the Impact of a Health Inter-
vention via User-generated Internet Content”

Vasileios Lampos

1,⇤
, Elad Yom-Tov

2
,

Richard Pebody

3
, Ingemar J. Cox

1,4

1Department of Computer Science, University College London, UK
2Microsoft Research, US
3Public Health England, UK
4Department of Computer Science, University of Copenhagen, Denmark
⇤Corresponding author (v.lampos@ucl.ac.uk)

Table S1 The list of the 205 n-grams used as features in our predictive models for ILI rates.
The initial, manually compiled 36 n-grams are denoted using bold font weight.

1-grams: #chills, #cough, #disease, #dizzy, #doctor, #fatigue, #fever, #flu, #gp,
#headache, #illness, #infected, #infection, #medicine, #nausea, #shiver, #shivering,
#sneeze, #unwell, #vomit, chills, cough, coughed, coughing, diarrhoea, disease,
dizzy, doctor, fatigue, fatigued, fever, flu, gp, hay-fever, headache, illness, in-
fected, infection, influenza, man-flu, medicine, nausea, shiver, shivering, sneeze,
sneezed, sneezing, thermometer, tonsil, tonsils, unwell, vomit, vomited, vom-

iting

2-grams: annoying cough, awful headache, bad cough, bad headache, banging headache,
bed flu, bed headache, biggest headache, blocked nose, body ache, body aches, chest
infection, chesty cough, cold cough, cold flu, constant headache, cough cough, cough fuck,
cough medicine, cough sneeze, cough sore, cough syrup, cough worse, coughing blood,
coughing guts, coughing lungs, coughing sneezing, day doctor, day headache, disease
nation, doctor cure, doctor experience, doctor today, doctor told, dying flu, ear infection,
eye infection, feel dizzy, feel sick, feel unwell, feeling dizzy, feeling sick, feeling unwell,
fever pitch, flu feel, flu jab, flu tablets, fucking headache, gonna vomit, good doctor, hate
flu, hate unwell, hay fever, headache coming, headache days, headache feel, headache
feeling, headache fuck, headache good, headache hell, headache hours, headache morning,
headache night, headache sleep, headache sore, headache time, headache today, headache
work, headache worse, heart disease, horrible disease, horrible headache, infected restless,
kidney infection, killer headache, love doctor, love sneezing, major headache, man flu,
massive headache, mental illness, muscles ache, new doctor, night coughing, night
fever, people cough, pounding headache, rare disease, rid headache, runny nose, shiver
spine, sick dizzy, sick headache, sleep coughing, sneeze sneeze, sneezing fit, sore throat,
splitting headache, start fever, stomach ache, stu↵y nose, stupid cough, swine flu, taste
medicine, terminal illness, throat cough, throat headache, throat infection, tickly cough,
tired headache, viral infection, waiting doctor, waking headache, wanna vomit, watch
doctor, watching doctor, wine headache, woke headache, worst cough, worst headache

3-grams: blocked nose sore, cold flu tablets, cold sore throat, cough cough cough, day
feel sick, eat feel sick, feel sick eating, feel sick feel, feel sick stomach, feel sore throat,
food feel sick, hate feeling sick, headache feel sick, headache sore throat, hungry feel sick,
literally feel sick, nose sore throat, risk heart disease, sleep feel sick, sore throat blocked,
sore throat coming, sore throat cough, throat blocked nose, tired feel sick, today feel
sick, woke sore throat, worlds worst headache, worst sore throat, worst stomach ache

4-grams: blocked nose sore throat, cough cough cough cough

the	produced		
n-grams	(features)	

bolded	n-grams	
denote	the	seed		

terms



Intervention	impact:	the	methods	(3)
First,	we	come	up	with	an	ILI	model	using	(and	comparing):	
1. Ridge	regression	
2. Elastic	Net	
3. A	GP	model

Assessing the impact of a health intervention via Internet content

assumption that different n-gram categories may have varied usage patterns, requir-
ing different parametrization for a proper modeling. Also as n increases, the n-gram
categories are expected to have an increasing semantic value. The final covariance
function, therefore, becomes

k(x, x′) =
(

C∑

n=1

kRQ(gn, g′
n)

)

+ kN(x, x′), (8)

where gn is used to express the features of each n-gram category, i.e., x = {g1, g2,
g3, g4}, C is equal to the number of n-gram categories (in our experiments, C = 4)
and kN(x, x′) = σ 2

N × δ(x, x′) models noise (δ being a Kronecker delta function).
The summation of RQ kernels which are based on different sets of features can be
seen as an exploration of the first order interactions of these feature families; more
elaborate combinations of features could be studied by applying different types of
covariance functions (e.g., Matérn 1986) or an additive kernel (Duvenaud et al. 2011).
An extended examination of these and other models is beyond the scope of this work.

Denoting the disease rate time series as y = (y1, . . . , yN ), the GP regression objec-
tive is defined by the minimization of the following negative log-marginal likelihood
function

argmin
σ1,...,σC ,ℓ1,...,ℓC ,α1,...,αC ,σN

(
(y − µ)ᵀK−1(y − µ)+ log |K|

)
, (9)

whereK holds the covariance function evaluations for all pairs of inputs, i.e., (K)i, j =
k(xi , x j ), and µ = (µ(x1), . . . , µ(xN )). Based on a new observation x∗, a prediction
is conducted by computing the mean value of the posterior predictive distribution,
E[y∗|y,O, x∗] (Rasmussen and Williams 2006).

3.3 Intervention impact assessment

Conventional epidemiology typically assesses the impact of a healthcare intervention,
such as a vaccination program, by comparing population disease rates in the affected
(target) areas to the ones in non participating (control) areas (Pebody et al. 2014).
However, a direct comparison of target and control areas may not always be applicable
as comparable locations would need to be represented by very similar properties, such
as geography, demographics andhealthcare coverage. Identifying andquantifying such
underlying characteristics is not something that is always possible or can be resolved
in a straightforward manner. We, therefore, determine the control areas empirically,
but in an automatic manner, as discussed below.

Firstly, we compute disease estimates (q) for all areas using our input observations
(social media and search query data) and a text regression model. Ideally, for a target
area v we wish to compare the disease rates during (and slightly after) the intervention
program (qv) with disease rates that would have occurred, had the program not taken
place (q∗

v). Of course, the latter information,q∗
v , cannot be observed, only estimated. To

do so, we adopt a methodology proposed for addressing a related task, i.e., measuring
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for the inputs x, x′ ∈ RM (both expressing rows of the observation matrix X) we want
to learn a function f : RM → R that is drawn from a GP prior

f (x) ∼ GP
(
µ(x), k(x, x′)

)
, (4)

where µ(x) and k(x, x′) denote the mean and covariance (or kernel) functions respec-
tively; in our experiments we set µ(x) = 0. Evidently, the GP kernel function is
applied on pairs of input (x, x′). The aim is to construct a GP that will apply a smooth
function on the input space, based on the assumption that small changes in the response
variable should also reflect on small changes in the observed term frequencies. A com-
mon covariance function that accommodates this is the isotropic Squared Exponential
(SE), also known as the radial basis function or exponentiated quadratic kernel, and
defined as

kSE(x, x
′) = σ 2 exp

(

−∥x − x′∥22
2ℓ2

)

, (5)

where σ 2 describes the overall level of variance and ℓ is referred to as the characteristic
length-scale parameter. Note that ℓ is inversely proportional to the predictive relevancy
of the feature category on which it is applied (high values of ℓ indicate a low degree of
relevance), and that σ 2 is a scaling factor. An infinite sum of SE kernels with different
length-scales results to another well studied covariance function, the rational quadratic
(RQ) kernel (Rasmussen and Nickisch 2010). It is defined as

kRQ(x, x′) = σ 2

(

1+ ∥x − x′∥22
2αℓ2

)−α

, (6)

where α is a parameter that determines the relative weighting between small and large-
scale variations of input pairs. The RQ kernel can be used to model functions that are
expected to vary smoothly across many length-scales. Based on empirical evidence,
this kernel was shown to be more suitable for our prediction task.

In the GP framework predictions are conducted using Bayesian5 integration, i.e.,

p(y∗|x∗,O) =
∫

f
p(y∗|x∗, f )p( f |O), (7)

where y∗ denotes the response variable,O the training set and x∗ the current observa-
tion. Model training is performed by maximizing the log marginal likelihood p(y|O)

with respect to the hyper-parameters using gradient ascent.
Based on the property that the sum of covariance functions is also a valid covariance

function (Rasmussen and Nickisch 2010), we model the different n-gram categories
(1-grams, 2-grams, etc.) with a different RQ kernel. The reasoning behind this is the

5 Note that it is not strictly Bayesian in the sense that no prior is assumed for each one of the hyper-
parameters in the GP function.
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Main	kernel	function

Rational	Quadratic	kernel 
(infinite	sum	of	squared	
exponential	kernels)

using	a	kernel	per	n-gram	category
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1. Disease	intervention	launched	(to	a	set	of	areas)	

2. Define	a	distinct	set	of	control	areas	

3. Estimate	disease	rates	in	all	areas	

4. Identify	pairs	of	areas	with	strong	historical	correlation	
in	their	disease	rates	

5. Use	this	relationship	during	and	slightly	after	the	
intervention	to	infer	diseases	rates	in	the	affected	areas	
had	the	intervention	not	taken	place
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time	interval(s)	before	the	intervention
location(s)	where	the	intervention	took	place
control	location(s)

V. Lampos et al.

the effectiveness of offline (printed) advertisements using online information (Lambert
and Pregibon 2008).

Consider a situationwhere, prior to the commencement of the intervention program,
there exists a strong linear correlation between the estimated disease rates of areas that
participate in the program (v) and of areas that do not (c). Then, we can learn a linear
model that estimates the disease rates in v based on the disease rates in c. Hypothesizing
that the geographical heterogeneity encapsulated in this relationship does not change
during and after the campaign, we can subsequently use this model to estimate disease
rates in the affected areas in the absence of an intervention (q∗

v).
More formally, we first test whether the inferred disease rates in a control location c

for a period of τ = {t1, .., tN } days before the beginning of the intervention (qτ
c ) have

a strong Pearson correlation, r(qτ
v ,q

τ
c ), with the respective inferred rates in a target

area v (qτ
v ). If this is true, then we can learn a linear function f (w,β) : R → R that

will map qτ
c to qτ

v :

argmin
w,β

N∑

i=1

(
qtic w + β − qtiv

)2
, (10)

where qtiv and qtic denote weekly values for qτ
v and qτ

c respectively. By applying the
previously learned function on q∗

c , we can predict q∗
v using

q∗
v = q∗

cw + b, (11)

where q∗
c denotes the disease rates in the control areas during the intervention program
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there exists a strong linear correlation between the estimated disease rates of areas that
participate in the program (v) and of areas that do not (c). Then, we can learn a linear
model that estimates the disease rates in v based on the disease rates in c. Hypothesizing
that the geographical heterogeneity encapsulated in this relationship does not change
during and after the campaign, we can subsequently use this model to estimate disease
rates in the affected areas in the absence of an intervention (q∗

v).
More formally, we first test whether the inferred disease rates in a control location c

for a period of τ = {t1, .., tN } days before the beginning of the intervention (qτ
c ) have

a strong Pearson correlation, r(qτ
v ,q

τ
c ), with the respective inferred rates in a target

area v (qτ
v ). If this is true, then we can learn a linear function f (w,β) : R → R that

will map qτ
c to qτ

v :

argmin
w,β

N∑

i=1

(
qtic w + β − qtiv

)2
, (10)

where qtiv and qtic denote weekly values for qτ
v and qτ

c respectively. By applying the
previously learned function on q∗

c , we can predict q∗
v using

q∗
v = q∗

cw + b, (11)

where q∗
c denotes the disease rates in the control areas during the intervention program

and b is a column vector with N replications of the bias term (β).
Twometrics are used to quantify the difference between the actual estimated disease

rates (qv) and the projectedones had the campaignnot takenplace (q∗
v). Thefirstmetric,

δv , expresses the absolute difference in their mean values

δv = qv − q∗
v, (12)

and the second one, θv , measures their relative difference

θv = qv − q∗
v

q∗
v

. (13)

We refer to θv as the impact percentage of the intervention. A successful campaign is
expected to register significantly negative values for δv and θv .

Confidence intervals (CIs) for these metrics can be derived via bootstrap sampling
(Efron and Tibshirani 1994). By sampling with replacement the regression’s residuals
qτ
c − q̂τ

c in Eq. 10 (where q̂τ
c is the fit of the training data qτ

v ) and then adding them
back to q̂τ

c , we create bootstrapped estimates for the mapping function f (ẇ, β̇). We
additionally sample with replacement qv and qc, before applying the bootstrapped
function on them. This process is repeated 100,000 times and an equivalent number
of estimates for δv and θv is computed. The CIs are derived by the .025 and .975
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> Vaccination	programme	for	children	(4	to	11	years)	in	pilot	
areas	of	England	during	the	2013/14	flu	season	

> Vaccination	period	(blue):	Sept.	2013	to	Jan.	2014	
> Post-vaccination	period	(green):	Feb.	to	April	2014



Intervention	impact:	results	(2)

Vaccination impact paper
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9. Recap	and	concluding	remarks



What	has	been	presented	today

a. Essentials	on	public	health	surveillance	

b. Basics	on	linear,	regularised	(ridge,	lasso,	elastic	
net)	and	nonlinear	regression	using	Gaussian	
Processes	

c. Original	Google	Flu	Trends	model	and	why	it	failed,	
plus	an	improved	approach	

d. From	Twitter	to	flu	using	regularised	regression	

e. A	framework	for	assessing	the	impact	of	a	health	
intervention	using	social	media	and	search	query	
data



A	lot	of	things	not	presented	today

+ There	is	a	growing	research	interest	on	digital	disease 
surveillance	(lots	of	interesting	research	projects	and	
papers);	we	just	scratched	the	surface	today!	

+ Digging	further	into	methodological	details	

> Machine	Learning	/	Statistical	aspects	

> Natural	Language	Processing	/	Information	Retrieval	

> Epidemiology	

+ Negative	results



Things	to	take	away	from	this	lecture

+ User-generated	data	can	be	used	to	assist	traditional	
health	surveillance	methods	

+ Useful:	(a)	more	information	—	better	decisions,	and	
(b)	under-developed	parts	of	the	world	may	benefit	

+ Techniques	may	not	always	be	straightforward	(or	
simplistic);	they	require	rigorous	evaluation	(although	
not	always	possible!)	

+ Key	elements	in	this	procedure	are	(a)	the	better	
understanding	of	natural	language,	and	(b)	the	
statistical	machine	learning	methods	that	will	capture	
and	translate	this	understanding	to	correct	estimates



Research	opportunities

+ In	our	research	group	at	UCL,	we	focus	on	user-
generated	content	analysis	

+ Themes	of	interest	are	not	only	health-based,	e.g.	
applications	for	inferring	characteristics	of	social	
media	users,	use	of	social	media	in	other	predictive	
tasks	such	as	modelling	voting	intention	etc.	

+ If	you	are	interested	in	this	or	similar	research	ideas	
and	want	to	do	a	Ph.D.,	get	in	touch,	funding	may	
be	available	(email:	v.lampos@ucl.ac.uk)

mailto:v.lampos@ucl.ac.uk?subject=Interested%20in%20doing%20a%20Ph.D.%20at%20UCL
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