COMP0005 (Algorithms) Quicksort

Vasileios Lampos
Computer Science, UCL

Slides (with potential revisions)
lampos.net/slides/quicksort2019.pdf

About this lecture

- Quicksort (yet another sorting algorithm)
- Description
- Performance analysis
- Material
- Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms. MIT Press, 3rd Edition, 2009 (mainly Chapter 7)
- Alternative slides at https://algs4.cs.princeton.edu/lectures/ (Sedgewick and Wayne)

Quicksort divides \& conquers

Quicksort divides \& conquers

Given an array A with n elements, $A[1 \ldots n]$:

- DIVIDE (step 1)

Partition, i.e. re-arrange the elements of, array $A[1 \ldots n]$ so that for some element $A[q]$:

1. all elements on the left of $A[q]$, i.e. $A[1 \ldots q-1]$, are less than or equal to $A[q]$, and
2. all elements on the right of $A[q]$, i.e. $A[q+1 \ldots n]$, are greater than or equal to $A[q]$.

Quicksort divides \& conquers

Given an array A with n elements, $A[1 \ldots n]$:

- DIVIDE (step 1)

Partition, i.e. re-arrange the elements of, array $A[1 \ldots n]$ so that for some element $A[q]$:

1. all elements on the left of $A[q]$, i.e. $A[1 \ldots q-1]$, are less than or equal to $A[q]$, and
2. all elements on the right of $A[q]$, i.e. $A[q+1 \ldots n]$, are greater than or equal to $A[q]$.

- CONQUER (step 2)

Sort sub-arrays $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ by recursive executions of step 1.

Quicksort divides \& conquers

Given an array A with n elements, $A[1 \ldots n]$:

- DIVIDE (step 1)

Partition, i.e. re-arrange the elements of, array $A[1 \ldots n]$ so that for some element $A[q]$:

1. all elements on the left of $A[q]$, i.e. $A[1 \ldots q-1]$, are less than or equal to $A[q]$, and
2. all elements on the right of $A[q]$, i.e. $A[q+1 \ldots n]$, are greater than or equal to $A[q]$.

- CONQUER (step 2)

Sort sub-arrays $A[1 \ldots q-1]$ and $A[q+1 \ldots n]$ by recursive executions of step 1.

- COMBINE (step 3)

Just by joining the sorted sub-arrays we obtain a sorted array.

Quicksort divides \& conquers

Given an array A with n elements, $A[1 \ldots n]$:

- DIVIDE (step 1)

Partition, i.e. re-arrange the elements of, array $A[1 \ldots n]$ so that for some element $A[q]$:

1. all element Note:
are less than or
equal to A. We will assume that the
2. all element than or equ

CONQUER We will be sorting the elements
il], are greater

- CONQUER of A in an ascending order.
 executions of step 1.
- COMBINE (step 3)

Just by joining the sorted sub-arrays we obtain a sorted array.

Quicksort was...

- invented by Tony Hoare in 1959
- published in 1961 (paper)

Quicksort was...

- invented by Tony Hoare in 1959
- published in 1961 (paper)

ALGORITHM 64
QUICKSORT
C. A. R. Hoare

Eliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure quicksort (A, M, N); value M, N; array A; integer M, N;
comment Quicksort is a very fast and convenient method of sorting an array in the random-access store of a computer. The entire contents of the store may be sorted, since no extra space is required. The average number of comparisons made is $2(M-N) \ln$ ($\mathrm{N}-\mathrm{M}$), and the average number of exchanges is one sixth this amount. Suitable refinements of this method will be desirable for its implementation on any actual computer;
begin integer I, J;
if $M<N$ then begin partition (A, M, N, I, J);
quicksort ($\mathrm{A}, \mathrm{M}, \mathrm{J}$) ;
quicksort (A, I, N)
end
quicksort
end

Tony Hoare in 2011

Charles Antony Richard Hoare 11 January 1934 (age 84)

Quicksort was...

- invented by Tony Hoare in 1959
- published in 1961 (paper) ALGORITHM 64
QUICKSORT
C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure quicksort (A, M, N); value M, N; array A; integer M, N;
comment Quicksort is a very fast and convenient method of sorting an array in the random-access store of a computer. The entire contents of the store may be sorted, since no extra space is required. The average number of comparisons made is $2(M-N) \ln$ ($\mathrm{N}-\mathrm{M}$), and the average number of exchanges is one sixth this amount. Suitable refinements of this method will be desirable for its implementation on any actual computer;
begin integer I, J;
if $M<N$ then begin partition (A, M, N, I, J);
quicksort ($\mathrm{A}, \mathrm{M}, \mathrm{J}$) ;
quicksort (A, I, N)
end
quicksort

Tony Hoare in 2011

Charles Antony Richard Hoare 11 January 1934 (age 84)

Quicksort was...

- invented by Tony Hoare in 1959
- published in 1961 (paper)

ALGORITHM 64
QUICKSORT
C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure quicksort (A, M, N); value M, N; array A; integer M, N;
comment Quicksort is a very fast and convenient method of sorting an array in the random-access store of a computer. The entire contents of the store may be sorted, since no extra space is required. The average number of comparisons made is $2(\mathrm{M}-\mathrm{N})$ ln ($\mathrm{N}-\mathrm{M}$), and the average number of exchanges is one sixth this amount. Suitable refinements of this method will be desirable for its implementation on any actual computer;
begin
integer 1 , J ;
if $\mathrm{M}<\mathrm{N}$ then begin partition ($\mathrm{A}, \mathrm{M}, \mathrm{N}, \mathrm{I}, \mathrm{J}$);
quicksort (A,M,J);
quicksort (A, I, N)
end
quicksort

- published with an analysis in 1962 (paper)

Table 1

NUMBER OF Items	MERGE Sort	Quicksort
500	2 min 8 sec	1 min 21 sec
1,000	4 min 48 sec	3 min 8 sec
1,500	$8 \mathrm{~min} 15 \mathrm{sec} *$	5 min 6 sec
2,000	$11 \mathrm{~min} 0 \mathrm{sec}^{*}$	6 min 47 sec

Tony Hoare in 2011

Born
Charles Antony Richard Hoare 11 January 1934 (age 84)

* These figures were computed by formula, since they cannot be achieved on the 405 owing to limited store size.

Quicksort was...

- invented by Tony Hoare in 1959
- published in 1961 (paper)

ALGORITHM 64
QUICKSORT
C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
procedure quicksort ($\mathrm{A}, \mathrm{M}, \mathrm{N}$); value M, N;
array A ; integer M, N;
comment Quicksort is a very fast and convenient method of sorting an array in the random-access store of a computer. The entire contents of the store may be sorted, since no extra space is required. The average number of comparisons made is $2(\mathrm{M}-\mathrm{N})$ ln ($\mathrm{N}-\mathrm{M}$), and the average number of exchanges is one sixth this amount. Suitable refinements of this method will be desirable for its implementation on any actual computer;
begin
integer $1, \mathrm{~J}$;
if $\mathrm{M}<\mathrm{N}$ then begin partition ($\mathrm{A}, \mathrm{M}, \mathrm{N}, \mathrm{I}, \mathrm{J}$);
quicksort (A,M,J);
quicksort (A, I, N)
end
quicksort

- published with an analysis in 1962 (paper)

Table 1

number of items	merge sort	QUICKSORT
500	2 min 8 sec	1 min 21 sec
1,000	4 min 48 sec	3 min 8 sec
1,500	$8 \mathrm{~min} 15 \mathrm{sec} *$	5 min 6 sec
$2,000$	$11 \mathrm{~min} 0 \mathrm{sec}^{*}$	6 min 47 sec

Tony Hoare in 2011

Born
Charles Antony Richard Hoare 11 January 1934 (age 84)

* These figures were computed by formula, since they cannot be achieved on the 405 owing to limited store size.

Quicksort...

- is still being used (in principle, i.e. its optimised versions)

Tony Hoare in 2011
Born Charles Antony Richard Hoare 11 January 1934 (age 84)
from Wikipedia

Quicksort...

- is still being used (in principle, i.e. its optimised versions)
- is efficient
- $\mathrm{O}(n \log n)$ on average
- $\Theta(n \log n)$ best case
- $\Theta\left(n^{2}\right)$ worst case
(for an array with n elements)

Tony Hoare in 2011
Born
Charles Antony Richard Hoare 11 January 1934 (age 84)

Quicksort...

- is still being used (in principle, i.e. its optimised versions)
- is efficient
- $\mathrm{O}(n \log n)$ on average
- $\Theta(n \log n)$ best case
- $\Theta\left(n^{2}\right)$ worst case
(for an array with n elements)

from Wikipedia
- requires a small amount of memory (in-place algorithm)

Quicksort

both p, r are array indices

QUICKSORT (A, p, r)
1 if $p<r$
$2 \quad q=\operatorname{Partition}(A, p, r)$
$3 \operatorname{Quicksort}(A, p, q-1)$
$4 \operatorname{Quicksort}(A, q+1, r)$

Quicksort

p, r, q are array indices

QUicksort (A, p, r)
1 if $p<r$
$2 \quad q=\operatorname{Partition}(A, p, r)$
$3 \operatorname{Quicksort}(A, p, q-1)$
$4 \operatorname{Quicksort}(A, q+1, r)$

Quicksort - Partition

p, r, q are array indices

$$
\text { sub-array } A[p \ldots r]
$$

$\operatorname{PaRtition}(A, p, r)$

```
\(1 \quad x=A[r]\)
\(2 i=p-1\)
3 for \(j=p\) to \(r-1\)
4 if \(A[j] \leq x\)
\(5 \quad i=i+1\)
6 exchange \(A[i]\) with \(A[j]\)
7 exchange \(A[i+1]\) with \(A[r]\)
8 return \(i+1\)
```

Partition is the central sorting operation of quicksort

```
QUICKSORT(A,p,r)
1 if }p<
    q= Partition(A,p,r)
    Quicksort(A, p,q-1)
    QUICKSORT (A,q+1,r)
```


Step-by-step example

p,					r, x
6	5	1	3	2	4

Quicksort (A, p, r)

```
if }p<
q= Partition( }A,p,r
    Quicksort(A,p,q-1)
    Quicksort( }A,q+1,r
```

Partition (A, p, r)
$1 \quad x=A[r]$
$i=p-1$
for $j=p$ to $r-1$
if $A[j] \leq x$
$i=i+1$
exchange $A[i]$ with $A[j]$
exchange $A[i+1]$ with $A[r]$
return $i+1$

Step-by-step example

Quicksort (A, p, r)
1 if $p<r$
$2 q=\operatorname{Partition}(A, p, r)$
$3 \operatorname{Quicksort}(A, p, q-1)$
$4 \operatorname{Quicksort}(A, q+1, r)$

```
Partition \((A, p, r)\)
\(x=A[r]\)
    \(i=p-1\)
    for \(j=p\) to \(r-1\)
            if \(A[j] \leq x\)
            \(i=i+1\)
                        exchange \(A[i]\) with \(A[j]\)
    exchange \(A[i+1]\) with \(A[r]\)
    return \(i+1\)
```


Step-by-step example

p, j					r, x	pivot element
6	5	1	3	2		

Quicksort (A, p, r)
$2 q=\operatorname{Partition}(A, p, r)$
$3 \operatorname{Quicksort}(A, p, q-1)$
Quicksort $(A, q+1, r)$

```
1 if \(p<r\)
```

1 if $p<r$
$q=\operatorname{Partition}(A, p, r)$
$q=\operatorname{Partition}(A, p, r)$
Quicksort $(A, p, q-1)$
Quicksort $(A, p, q-1)$
4 Quicksort $(A, q+1, r)$

```
4 Quicksort \((A, q+1, r)\)
```

```
Partition \((A, p, r)\)
    \(1 \quad x=A[r]\)
    \(2 i=p-1\)
3 for \(j=p\) to \(r-1\)
\(4 \quad\) if \(A[j] \leq x\)
\(5 \quad i=i+1\)
6 exchange \(A[i]\) with \(A[j]\)
        7 exchange \(A[i+1]\) with \(A[r]\)
        8 return \(i+1\)
```

i

$$
\quad x=4, A[j=p+1]=5>x
$$

Step-by-step example

Quicksort (A, p, r)

$$
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{QUicksort}(A, p, q-1) \\
& \operatorname{Quicksort}(A, q+1, r)
\end{aligned}
$$

i

i	j				
6	5	1	3	2	4

Partition (A, p, r)
$x=A[r]$
$i=p-1$
for $j=p$ to $r-1$
if $A[j] \leq x$
$i=i+1$
exchange $A[i]$ with $A[j]$
exchange $A[i+1]$ with $A[r]$
return $i+1$

Step-by-step example

QUicksort (A, p, r)

Partition (A, p, r)
$1 \quad x=A[r]$

$$
i=p-1
$$

```
\[
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \quad \operatorname{Quicksort}(A, p, q-1) \\
& \operatorname{Quicksort}(A, q+1, r)
\end{aligned}
\]
\(2 q=\operatorname{Partition}(A, p, r)\)
\(3 \operatorname{Quicksort}(A, p, q-1)\)
4 QUicksort \((A, q+1, r)\)
```

$$
\text { for } j=p \text { to } r-1
$$

3 for $j=p$ to $r-1$

$$
\text { if } A[j] \leq x
$$

4 if $A[j] \leq x$

$$
i=i+1
$$

$5 \quad i=i+1$

$$
\text { exchange } A[i] \text { with } A[j]
$$

$6 \quad$ exchange $A[i]$ with $A[j]$

$$
\text { exchange } A[i+1] \text { with } A[r]
$$

7 exchange $A[i+1]$ with $A[r]$

$$
\text { return } i+1
$$

8 return $i+1$
$i \quad$ p,j

r, x					
6	5	1	3	2	4

i

j					
6	5	1	3	2	4

i					
6	5	1	3	2	4

Step-by-step example

Quicksort (A, p, r)

Partition (A, p, r)

$$
\begin{array}{ll}
1 & x=A[r] \\
2 & i=p-1 \\
3 & \text { for } j=p \text { to } r-1 \\
4 & \text { if } A[j] \leq x \\
5 & i=i+1
\end{array}
$$

```
\[
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{QUicksort}(A, p, q-1) \\
& \operatorname{QUicksort}( A, q+1, r)
\end{aligned}
\]
\(2 q=\operatorname{Partition}(A, p, r)\)
\(3 \operatorname{Quicksort}(A, p, q-1)\)
\(4 \operatorname{Quicksort}(A, q+1, r)\)
```

1

$$
\text { exchange } A[i] \text { with } A[j]
$$

$6 \quad$ exchange $A[i]$ with $A[j]$

$$
\text { exchange } A[i+1] \text { with } A[r]
$$

7 exchange $A[i+1]$ with $A[r]$

$$
\text { return } i+1
$$

8 return $i+1$
$i \quad$ p,j

r, x					
6	5	1	3	2	4

i

j					
6	5	1	3	2	4

Step-by-step example

Quicksort (A, p, r)

Partition (A, p, r)

$$
\begin{array}{ll}
1 & x=A[r] \\
2 & i=p-1 \\
3 & \text { for } j=p \text { to } r-1 \\
4 & \text { if } A[j] \leq x \\
5 & i=i+1
\end{array}
$$

exchange $A[i]$ with $A[j]$
exchange $A[i+1]$ with $A[r]$
return $i+1$

```
\[
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{QUicksort}(A, p, q-1) \\
& \operatorname{QUicksort}( A, q+1, r)
\end{aligned}
\]
\(2 q=\operatorname{Partition}(A, p, r)\)
\(3 \operatorname{Quicksort}(A, p, q-1)\)
\(4 \operatorname{Quicksort}(A, q+1, r)\)
```

1
$6 \quad$ exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$
8 return $i+1$

i

j					
6	5	1	3	2	4

j					
1	5	6	3	2	4

and $A[i] \leftrightarrow A[j]$

i				j			
1	5	6	3	2	4		

Step-by-step example

$i \quad \mathrm{p}, j$

	r				
6	5	1	3	2	4

Quicksort (A, p, r)

$$
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{Quicksort}(A, p, q-1) \\
& \operatorname{Quicksort}(A, q+1, r)
\end{aligned}
$$

Partition (A, p, r)

$$
\begin{array}{ll}
1 & x=A[r] \\
2 & i=p-1 \\
3 & \text { for } j=p \text { to } r-1 \\
4 & \text { if } A[j] \leq x \\
5 & i=i+1
\end{array}
$$

exchange $A[i]$ with $A[j]$
exchange $A[i+1]$ with $A[r]$ return $i+1$
$6 \quad$ exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$
return $i+1$
i

$i \quad j$						
1	5	6	3		2	4

and $A[i] \leftrightarrow A[j]$

i								
1	5	6	3	2	4			

 and $A[i] \leftrightarrow A[j]$

Step-by-step example

$i \quad \mathrm{p}, j$

r, x					
6	5	1	3	2	4

Quicksort (A, p, r)

$$
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{Quicksort}(A, p, q-1) \\
& \operatorname{Quicksort}(A, q+1, r)
\end{aligned}
$$

Partition (A, p, r)

```
\(x=A[r]\)
    \(i=p-1\)
    for \(j=p\) to \(r-1\)
            if \(A[j] \leq x\)
            \(i=i+1\)
            exchange \(A[i]\) with \(A[j]\)
        exchange \(A[i+1]\) with \(A[r]\)
        return \(i+1\)
```

i

j					
6	5	1	3	2	4

i	j				
1	5	6	3	2	4

i			j		
1	5	6	3	2	4

i					j		
1	3	6	5	2	4		

Step-by-step example

$i \quad \mathrm{p}, \mathrm{j}$

r, x					
6	5	1	3	2	4

Quicksort (A, p, r)

$$
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{Quicksort}(A, p, q-1) \\
& \operatorname{Quicksort}(A, q+1, r)
\end{aligned}
$$

Partition (A, p, r)

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 \\
& \text { for } j=p \text { to } r-1 \\
& \quad \text { if } A[j] \leq x \\
& \quad i=i+1
\end{aligned}
$$

exchange $A[i]$ with $A[j]$
exchange $A[i+1]$ with $A[r]$ return $i+1$
i

1	5	6	3	2	4
$i \quad j$					
1	5	6	3	2	4

i							
1	3	6	5	2	4		
i							
1	3	2	5	j			

| i | | | | j | j |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 2 | 4 | 6 | 5 |$\quad j=r-1, A[i+1] \leftrightarrow A[r]$

Step-by-step example

p, j					r, x
6	5	1	3	2	

```
QUicksort \((A, p, r)\)
1 if \(p<r\)
\(2 q=\operatorname{Partition}(A, p, r)\)
\(3 \operatorname{Quicksort}(A, p, q-1)\)
4 Quicksort \((A, q+1, r)\)
Partition \((A, p, r)\)
\(1 \quad x=A[r]\)
\(2 i=p-1\)
3 for \(j=p\) to \(r-1\)
\(4 \quad\) if \(A[j] \leq x\)
\(5 \quad i=i+1\)
\(6 \quad\) exchange \(A[i]\) with \(A[j]\)
7 exchange \(A[i+1]\) with \(A[r]\)
8 return \(i+1\)
Quicksort \((A, p, r)\)
\[
\text { if } \begin{aligned}
& p<r \\
& q=\operatorname{Partition}(A, p, r) \\
& \operatorname{Quicksort}(A, p, q-1) \\
& \operatorname{Quicksort}(A, q+1, r)
\end{aligned}
\]
Partition \((A, p, r)\)
\[
\begin{aligned}
& i=p-1 \\
& \text { for } j=p \text { to } r-1 \\
& \quad \text { if } A[j] \leq x \\
& \quad i=i+1
\end{aligned}
\]
exchange \(A[i]\) with \(A[j]\)
exchange \(A[i+1]\) with \(A[r]\) return \(i+1\)
```

i

j					
6	5	1	3	2	4

i					
6	5	1	3	2	4

j					
1	5	6	3	2	4
j					
1	5	6	3	2	4

i				j		
1	3	2	4	6	5	

p, j	r, x	
1	3	2

4

$i \quad p, j r, x$	
6	5

Step-by-step example


```
Quicksort \((A, p, r)\)
Partition \((A, p, r)\)
\(\begin{array}{ll}1 & x=A[r] \\ 2 & i=p-1\end{array}\)
\(1 \quad x=A[r]\)
\(2 \quad i=p-1\)
3 for \(j=p\) to \(r-1\)
\(4 \quad\) if \(A[j] \leq x\)
\(5 \quad i=i+1\)
\(6 \quad\) exchange \(A[i]\) with \(A[j]\)
7 exchange \(A[i+1]\) with \(A[r]\)
8 return \(i+1\)
Quicksort \((A, p, r)\)
```

```
1 if \(p<r\)
```

1 if $p<r$
$2 q=\operatorname{Partition}(A, p, r)$
$2 q=\operatorname{Partition}(A, p, r)$
$\begin{array}{ll}2 & q=\operatorname{Partition}(A, p, r) \\ 3 & \operatorname{Quicksort}(A, p, q-1) \\ 4 & \operatorname{Quicksort}(A, q+1, r)\end{array}$
$\begin{array}{ll}2 & q=\operatorname{Partition}(A, p, r) \\ 3 & \operatorname{Quicksort}(A, p, q-1) \\ 4 & \operatorname{Quicksort}(A, q+1, r)\end{array}$
$\begin{array}{ll}2 & q=\operatorname{Partition}(A, p, r) \\ 3 & \operatorname{Quicksort}(A, p, q-1) \\ 4 & \operatorname{Quicksort}(A, q+1, r)\end{array}$

```
\(\begin{array}{ll}2 & q=\operatorname{Partition}(A, p, r) \\ 3 & \operatorname{Quicksort}(A, p, q-1) \\ 4 & \operatorname{Quicksort}(A, q+1, r)\end{array}\)
```

i

j					
6	5	1	3	2	4

i					
6	5	1	3	2	4

i					j		
1	3	2	4	6	5		

p, j	r, x	
1	3	2

4\begin{tabular}{l}
$i \quad p, j r, x$

\hline 6

 \left\lvert\, 5

\hline \multicolumn{1}{|c|}{}

\hline
\end{tabular}\right.

1	3	2

\square

Step-by-step example

Quicksort (A, p, r)


```
1 if \(p<r\)
\[
\begin{array}{lc}
1 & \text { if } p<r \\
2 & q=\operatorname{Partition}(A, p, r) \\
3 & \operatorname{Quicksort}(A, p, q-1) \\
4 & \operatorname{Quicksort}(A, q+1, r) \tag{2}
\end{array}
\]
```

Partition (A, p, r)
$1 \quad x=A[r]$
$2 i=p-1$

$$
3 \text { for } j=p \text { to } r-1
$$

4

$$
\text { if } A[j] \leq x
$$

$5 \quad i=i+1$

$$
i=i+1
$$

$6 \quad$ exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$ 8 return $i+1$

i					
6	5	1	3	2	4

i					
1	5	6	3	2	4
i					
1	5	6	3	2	4

i					j		
1	3	6	5	2	4		

i					j		
1	3	2	5	6	4		

i					j		
1	3	2	4	6	5		

p, j	r, x	
1	3	2

4| $i \quad p, j r, x$ | |
| :---: | :---: |
| 6 | 5 |

i, j		
1	3	2

 1 3		2

\square
4

Step-by-step example

Quicksort (A, p, r)

Partition (A, p, r)
$1 \quad x=A[r]$
$2 \quad i=p-1$
3 for $j=p$ to $r-1$
$4 \quad$ if $A[j] \leq x$
$5 \quad i=i+1$
$6 \quad$ exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$
8 return $i+1$

```
1 if \(p<r\)
```

1 if $p<r$
$2 q=\operatorname{Partition}(A, p, r)$
$2 q=\operatorname{Partition}(A, p, r)$
$3 \operatorname{Quicksort}(A, p, q-1)$
$3 \operatorname{Quicksort}(A, p, q-1)$
4 Quicksort $(A, q+1, r)$

```
4 Quicksort \((A, q+1, r)\)
```

 exchange \(A[i]\) with \(A[j]\)
 return \(i+1\)
 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 5 | | 2 | 4 | |

Why does quicksort work?

p, j					r, x
6	5	1	3	2	4
j					
6	5	1	3	2	4
$i \quad j$					
6	5	1	3	2	4
$i \quad j$					
1	5	6	3	2	4
$i \quad j$					
1	5	6	3	2	4
$i \quad j$					
1	3	6	5	2	4
i					
1	3	6	5	2	4
$i \quad j$					
1	3	2	5	6	4
i					
1	3	2	4	6	5

- As i goes through the array from left to right, no element greater than the pivot element $(=4)$ is left behind it. When such element is identified, it is swapped.

Partition (A, p, r)
$1 \quad x=A[r]$
$2 i=p-1$
3 for $j=p$ to $r-1$
4 if $A[j] \leq x$
$i=i+1$
exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$
8 return $i+1$

Why does quicksort work?

p, j					r, x
6	5	1	3	2	4
j					
6	5	1	3	2	4
$i \quad j$					
6	5	1	3	2	4
$i \quad j$					
1	5	6	3	2	4
$i \quad j$					
1	5	6	3	2	4
$i \quad j$					
1	3	6	5	2	4
i					
1	3	6	5	2	4
$i \quad j$					
1	3	2	5	6	4
i					
1	3	2	4	6	5

- As i goes through the array from left to right, no element greater than the pivot element $(=4)$ is left behind it. When such element is identified, it is swapped.
- Elements $i+1$ to $j-1$ are always greater than the pivot element.

```
Partition \((A, p, r)\)
\(1 \quad x=A[r]\)
\(2 i=p-1\)
3 for \(j=p\) to \(r-1\)
4 if \(A[j] \leq x\)
    \(i=i+1\)
    exchange \(A[i]\) with \(A[j]\)
7 exchange \(A[i+1]\) with \(A[r]\)
8 return \(i+1\)
```

Quicksort's performance

Quicksort's performance

- The performance is affected by the choice of the pivot element during partitioning: balanced vs. unbalanced outcome

Quicksort's performance

- The performance is affected by the choice of the pivot element during partitioning: balanced vs. unbalanced outcome
- Worst case: $\Theta\left(n^{2}\right)$
- when partitioning is always completely unbalanced, i.e. the choice of pivot generates sub-arrays that always have $n-1$ and 0 elements, respectively
- when the array is already sorted

Quicksort's performance

- The performance is affected by the choice of the pivot element during partitioning: balanced vs. unbalanced outcome
- Worst case: $\Theta\left(n^{2}\right)$
- when partitioning is always completely unbalanced, i.e. the choice of pivot generates sub-arrays that always have $n-1$ and 0 elements, respectively
- when the array is already sorted
- Best case: $\Theta(n \log n)$
- when partitioning is always fairly balanced, i.e. the choice of pivot generates sub-arrays that always have $\lfloor n / 2$ 」 and $\lceil n / 2\rceil-1$ elements, respectively

Step-by-step example for worst case

$i \quad p, j$

r					
1	2	3	4	5	6

Step-by-step example for worst case

p, j					r, x
1	2	3	4	5	6

i, j

1	2	3	4	5	6

Step-by-step example for worst case

p,j					r, x
1	2	3	4	5	6

i, j

1	2	3	4	5	6

i, j					
1	2	3	4	5	6

Step-by-step example for worst case

p,j					r, x
1	2	3	4	5	6

i, j

1	2	3	4	5	6

i, j					
1	2	3	4	5	6

i, j					
1	2	3	4	5	6

Step-by-step example for worst case

$p, j \quad r, x$					
1	2	3	4	5	6

i, j

1	2	3	4	5	6

i, j					
1	2	3	4	5	6

i, j					
1	2	3	4	5	6

i, j					
1	2	3	4	5	6

Step-by-step example for worst case

$p, j \quad r, x$					
1	2	3	4	5	6

i, j

1	2	3	4	5	6

i, j					
1	2	3	4	5	6

i, j					
1	2	3	4	5	6

i, j					
	2	3	4	5	6

1	2	3	4	5	6

Step-by-step example for worst case

p, j					r, x
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6

p,j				r, x	
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
$\begin{array}{lc}i & p, j\end{array} \quad r, x$					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6
i, j					
1	2	3	4	5	6

Recall previous example (average case)

Cost estimation (running time)

```
Quicksort ( \(A, p, r\) )
if \(\begin{aligned} & p<r \\ & q=\operatorname{Partition}(A, p, r) \\ & \operatorname{QuickSort}(A, p, q-1) \\ & \operatorname{QUicksort}(A, q+1, r)\end{aligned}\)
```

Partition (A, p, r)
$1 \quad x=A[r]$
$2 i=p-1$
3 for $j=p$ to $r-1$

4 if $A[j] \leq x$
$5 \quad i=i+1$
exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$
8 return $i+1$
6

- Cost is mainly affected by the partition operation, and especially by the for-loop in it that performs $n-1$ comparisons
- The cost for a single partition operation is: $\Theta(n)$, where $n=r-p+1$

Worst case cost estimation example $(n=8)$

$$
n=8 \quad n \text {-dimensional array, cost: } c * 8
$$

Worst case cost estimation example $(n=8)$

$$
n_{n-1=7}^{n=8} \quad \begin{aligned}
& n \text {-dimensional array, cost: } c * 8 \\
& P: \text { pivot element, cost: } c *(7+1)
\end{aligned}
$$

Worst case cost estimation example $(n=8)$

n-dimensional array, cost: $c * 8$
P : pivot element, cost: $c *(7+1)$
cost: $c * 7$

Worst case cost estimation example $(n=8)$

n-dimensional array, cost: $c * 8$
P : pivot element, cost: $c *(7+1)$
cost: $c * 7$
cost: $c * 6$

Worst case cost estimation example $(n=8)$

n-dimensional array, cost: $c * 8$
P : pivot element, cost: $c *(7+1)$
cost: $c * 7$
cost: $c * 6$
cost: $c * 5$

Worst case cost estimation example $(n=8)$

Worst case cost estimation example $(n=8)$

Worst case cost estimation example $(n=8)$

total cost: $c *(8+8 \ldots+2)=c * 43 \approx \boldsymbol{\Theta}\left(n^{2}\right)$

Worst case cost analysis

- Performing partition once on an n-dimensional array, generates 2 sub-arrays with q and $n-q-1$ elements

Worst case cost analysis

- Performing partition once on an n-dimensional array, generates 2 sub-arrays with q and $n-q-1$ elements
- The cost of partitioning an array with n elements is $\Theta(n)$

Worst case cost analysis

- Performing partition once on an n-dimensional array, generates 2 sub-arrays with q and $n-q-1$ elements
- The cost of partitioning an array with n elements is $\Theta(n)$

So, the cost of quicksort is: $\mathrm{T}(n)=(\mathrm{T}(q)+\mathrm{T}(n-q-1))+\Theta(n)$

Worst case cost analysis

- Performing partition once on an n-dimensional array, generates 2 sub-arrays with q and $n-q-1$ elements
- The cost of partitioning an array with n elements is $\Theta(n)$ So, the cost of quicksort is: $\mathrm{T}(n)=(\mathrm{T}(q)+\mathrm{T}(n-q-1))+\Theta(n)$

In the worst case, this cost will be maximised, i.e.

$$
\begin{equation*}
\mathrm{T}(n)=\max _{0 \leq q \leq n-1}(\mathrm{~T}(q)+\mathrm{T}(n-q-1))+\Theta(n) \tag{1}
\end{equation*}
$$

Worst case cost analysis

- Performing partition once on an n-dimensional array, generates 2 sub-arrays with q and $n-q-1$ elements
- The cost of partitioning an array with n elements is $\Theta(n)$ So, the cost of quicksort is: $\mathrm{T}(n)=(\mathrm{T}(q)+\mathrm{T}(n-q-1))+\Theta(n)$

In the worst case, this cost will be maximised, i.e.

$$
\begin{equation*}
\mathrm{T}(n)=\max _{0 \leq q \leq n-1}(\mathrm{~T}(q)+\mathrm{T}(n-q-1))+\Theta(n) \tag{1}
\end{equation*}
$$

Let's now assume that: $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right) \leq c n^{2}$, where $c>0$

Worst case cost analysis

- Performing partition once on an n-dimensional array, generates 2 sub-arrays with q and $n-q-1$ elements
- The cost of partitioning an array with n elements is $\Theta(n)$

So, the cost of quicksort is: $\mathrm{T}(n)=(\mathrm{T}(q)+\mathrm{T}(n-q-1))+\Theta(n)$
In the worst case, this cost will be maximised, i.e.

$$
\begin{equation*}
\mathrm{T}(n)=\max _{0 \leq q \leq n-1}(\mathrm{~T}(q)+\mathrm{T}(n-q-1))+\Theta(n) \tag{1}
\end{equation*}
$$

Let's now assume that: $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right) \leq c n^{2}$, where $c>0$
and substitute (1) in (2): $\mathrm{T}(n) \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n)$

Worst case cost analysis

$$
\begin{aligned}
\mathrm{T}(n) & \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n) \\
& =c \max _{0 \leq q \leq n-1}\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n)
\end{aligned}
$$

Worst case cost analysis

$$
\begin{aligned}
\mathrm{T}(n) & \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n) \\
& =c \max _{0 \leq q \leq n-1} \frac{\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n)}{g(q)}
\end{aligned}
$$

So, we want to maximise $\quad g(q)=q^{2}+(n-q-1)^{2}$

Worst case cost analysis

$$
\begin{aligned}
\mathrm{T}(n) & \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n) \\
& =c \max _{0 \leq q \leq n-1} \frac{\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n)}{g(q)}
\end{aligned}
$$

So, we want to maximise $\quad g(q)=q^{2}+(n-q-1)^{2}$

$$
\begin{aligned}
& \frac{\partial g}{\partial q}=2 q+2(n-q-1)(-1)=4 q-2 n+2 \\
& \frac{\partial g}{\partial q}=0 \Longrightarrow q=\frac{1}{2}(n-1)
\end{aligned}
$$

Worst case cost analysis

$$
\begin{aligned}
\mathrm{T}(n) & \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n) \\
& =c \max _{0 \leq q \leq n-1} \frac{\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n)}{g(q)}
\end{aligned}
$$

So, we want to maximise $\quad g(q)=q^{2}+(n-q-1)^{2}$

$$
\begin{aligned}
& \frac{\partial g}{\partial q}=2 q+2(n-q-1)(-1)=4 q-2 n+2 \\
& \frac{\partial g}{\partial q}=0 \Longrightarrow q=\frac{1}{2}(n-1) \\
& \frac{\partial^{2} g}{\partial q^{2}}=4>0
\end{aligned}
$$

Worst case cost analysis

$$
\begin{aligned}
\mathrm{T}(n) & \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n) \\
& =c \max _{0 \leq q \leq n-1} \frac{\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n)}{g(q)}
\end{aligned}
$$

So, we want to maximise $\quad g(q)=q^{2}+(n-q-1)^{2}$

$$
\begin{aligned}
& \frac{\partial g}{\partial q}=2 q+2(n-q-1)(-1)=4 q-2 n+2 \\
& \frac{\partial g}{\partial q}=0 \Longrightarrow q=\frac{1}{2}(n-1) \text { this is a local minimum of } g(q) \\
& \frac{\partial^{2} g}{\partial q^{2}}=4>0
\end{aligned}
$$

Worst case cost analysis

$$
\mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min \text { of } g(q) \text { for } q=\frac{1}{2}(n-1)
$$

Worst case cost analysis

$$
\begin{array}{ll}
\mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) & \min \text { of } g(q) \text { for } q=\frac{1}{2}(n-1) \\
& \text { max of } g(q) \text { for } q=0 \text { or } q=n-1
\end{array}
$$

Worst case cost analysis

$$
\mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min \text { of } g(q) \text { for } q=\frac{1}{2}(n-1)
$$

$$
\max \text { of } g(q) \text { for } q=0 \text { or } q=n-1
$$

$$
g(0)=g(n-1)=(n-1)^{2}, g\left(\frac{n-1}{2}\right)=\frac{(n-1)^{2}}{2}
$$

Worst case cost analysis

$$
\begin{aligned}
& \mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min \text { of } g(q) \text { for } q=\frac{1}{2}(n-1) \\
& \max \text { of } g(q) \text { for } q=0 \text { or } q=n-1 \\
& g(0)=g(n-1)=(n-1)^{2}, g\left(\frac{n-1}{2}\right)=\frac{(n-1)^{2}}{2}
\end{aligned}
$$

$\mathrm{T}(n) \leq c(n-1)^{2}+\Theta(n)=c n^{2}-2 c n+c+\Theta(n) \leq c n^{2}$

Worst case cost analysis

$$
\begin{aligned}
& \mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min \text { of } g(q) \text { for } q=\frac{1}{2}(n-1) \\
& \max \text { of } g(q) \text { for } q=0 \text { or } q=n-1 \\
& g(0)=g(n-1)=(n-1)^{2}, g\left(\frac{n-1}{2}\right)=\frac{(n-1)^{2}}{2}
\end{aligned}
$$

$\mathrm{T}(n) \leq c(n-1)^{2}+\Theta(n)=c n^{2}-2 c n+c+\Theta(n) \leq c n^{2}$
which results in $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right)$

Worst case cost analysis

$\mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min$ of $g(q)$ for $q=\frac{1}{2}(n-1)$
max of $g(q)$ for $q=0$ or $q=n-1$

$$
g(0)=g(n-1)=(n-1)^{2}, g\left(\frac{n-1}{2}\right)=\frac{(n-1)^{2}}{2}
$$

$\mathrm{T}(n) \leq c(n-1)^{2}+\Theta(n)=c n^{2}-2 c n+c+\Theta(n) \leq c n^{2}$
which results in $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right)$
Also: $\mathrm{T}(n) \geq c \frac{1}{2}(n-1)^{2}+\Theta(n)=\frac{c n^{2}}{2}+\frac{c}{2}$

Worst case cost analysis

$\mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min$ of $g(q)$ for $q=\frac{1}{2}(n-1)$
max of $g(q)$ for $q=0$ or $q=n-1$

$$
g(0)=g(n-1)=(n-1)^{2}, g\left(\frac{n-1}{2}\right)=\frac{(n-1)^{2}}{2}
$$

$\mathrm{T}(n) \leq c(n-1)^{2}+\Theta(n)=c n^{2}-2 c n+c+\Theta(n) \leq c n^{2}$
which results in $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right)$
Also: $\mathrm{T}(n) \geq c \frac{1}{2}(n-1)^{2}+\Theta(n)=\frac{c n^{2}}{2}+\frac{c}{2}$
which results in $\mathrm{T}(n)=\Omega\left(n^{2}\right)$

Worst case cost analysis

$\mathrm{T}(n) \leq c \max _{0 \leq q \leq n-1} g(q)+\Theta(n) \quad \min$ of $g(q)$ for $q=\frac{1}{2}(n-1)$ max of $g(q)$ for $q=0$ or $q=n-1$

$$
g(0)=g(n-1)=(n-1)^{2}, g\left(\frac{n-1}{2}\right)=\frac{(n-1)^{2}}{2}
$$

$\mathrm{T}(n) \leq c(n-1)^{2}+\Theta(n)=c n^{2}-2 c n+c+\Theta(n) \leq c n^{2}$
which results in $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right)$
Also: $\mathrm{T}(n) \geq c \frac{1}{2}(n-1)^{2}+\Theta(n)=\frac{c n^{2}}{2}+\frac{c}{2}$
which results in $\mathrm{T}(n)=\Omega\left(n^{2}\right)$
Thus, $\mathrm{T}(n)=\Theta\left(n^{2}\right)$.

Best case cost estimation example $(n=8)$

total cost: $c *(8+7+5+2)=c * 22 \approx \Theta(n \log n)$

Best case cost analysis

If the splits are even, partition produces two sub-problems, each of which has no size more than $n / 2$.

Best case cost analysis

If the splits are even, partition produces two sub-problems, each of which has no size more than $n / 2$.

Thus the running time is equal to:

$$
\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\Theta(n)
$$

Best case cost analysis

If the splits are even, partition produces two sub-problems, each of which has no size more than $n / 2$.

Thus the running time is equal to:

$$
\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\Theta(n)
$$

Using case 2 of the master theorem (see Theorem 4.1 in Cormen et al. textbook, 3rd edition), this has the solution:

$$
\mathrm{T}(n)=\Theta(n \log n)
$$

$$
\begin{aligned}
& \text { For } \mathrm{T}(n)=a \mathrm{~T}(n / b)+f(n), \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } \mathrm{T}(n)=\Theta\left(n^{\log _{b} a} \log n\right), \\
& \text { where } b=2 \text { and } a=2
\end{aligned}
$$

Randomised quicksort

- Instead of using the right-most element, $A[r]$, as the pivot...

```
RANDOMIZED-PARTITION( }A,p,r
1 i = RANDOM ( }p,r\mathrm{ )
2 exchange }A[r]\mathrm{ with }A[i
3 return Partition( }A,p,r
RANDOMIZED-QUICKSORT ( }A,p,r\mathrm{ )
1 if p<r
2
3 RANDOMIZED-QUICKSORT ( }A,p,q-1
R RANDOMIZED-QUICKSORT ( }A,q+1,r
```


Randomised quicksort

- Instead of using the right-most element, $A[r]$, as the pivot...

```
Randomized-Partition \((A, p, r)\)
\(1 i=\operatorname{RANDOM}(p, r)\)
2 exchange \(A[r]\) with \(A[i]\)
3 return Partition \((A, p, r)\)
Randomized-Quicksort \((A, p, r)\)
1 if \(p<r\)
\(2 q=\operatorname{RaNDOMIZED-PARTITION}(A, p, r)\)
3 Randomized-Quicksort \((A, p, q-1)\)
4 Randomized-Quicksort \((A, q+1, r)\)
```

- Why? By adding randomisation, obtaining the average expected performance is more likely than obtaining the worst case performance.

Average number of comparisons

```
QUicksort \((A, p, r)\)
1 if \(p<r\)
\(2 q=\operatorname{Partition}(A, p, r)\)
\(3 \operatorname{Quicksort}(A, p, q-1)\)
\(4 \operatorname{QUicksort}(A, q+1, r) \quad 4 \quad\) if \(A[j] \leq x\)
Partition \((A, p, r)\)
\(1 \quad x=A[r]\)
\(2 i=p-1\)
3 for \(j=p\) to \(r-1\)
\(5 \quad i=i+1\)
\(6 \quad\) exchange \(A[i]\) with \(A[j]\)
7 exchange \(A[i+1]\) with \(A[r]\)
8 return \(i+1\)
```


Average number of comparisons

$$
\begin{aligned}
& \text { Quicksort }(A, p, r) \\
& 1 \text { if } p<r \\
& 2 q=\operatorname{Partition}(A, p, r) \\
& \begin{array}{ll}
3 & \operatorname{Quicksort}(A, p, q-1) \\
4 & \operatorname{Quicksort}(A, q+1, r)
\end{array} \\
& \begin{array}{ll}
3 & \quad \operatorname{Quicksort}(A, p, q-1) \\
4 & \operatorname{Quicksort}(A, q+1, r)
\end{array} \\
& \text { Partition }(A, p, r) \\
& 1 \quad x=A[r] \\
& 2 i=p-1 \\
& 3 \text { for } j=p \text { to } r-1 \\
& 4 \text { if } A[j] \leq x \\
& i=i+1 \\
& 6 \text { exchange } A[i] \text { with } A[j] \\
& 7 \text { exchange } A[i+1] \text { with } A[r] \\
& 8 \text { return } i+1 \\
& c_{n}=1+(n-1)+\ldots
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
& \operatorname{QUicksort}(A, p, r) \\
& 1 \text { if } p<r \\
& \text { Partition }(A, p, r) \\
& 2 \quad q=\operatorname{PaRtition}(A, p, r) \quad 1 \quad \begin{array}{l}
1 \\
2 \\
2
\end{array} \quad i=p-1 \\
& 3 \operatorname{Quicksort}(A, p, q-1) \quad 3 \text { for } j=p \text { to } r-1 \\
& 4 \quad \operatorname{Quicksort}(A, q+1, r) \quad 4 \quad \text { if } A[j] \leq x \\
& i=i+1 \\
& \text { exchange } A[i] \text { with } A[j] \\
& \text { exchange } A[i+1] \text { with } A[r] \\
& \text { return } i+1 \\
& c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right]
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
& \operatorname{QUicksort}(A, p, r) \\
& 1 \text { if } p<r \\
& 2 q=\operatorname{Partition}(A, p, r) \\
& 3 \operatorname{Quicksort}(A, p, q-1) \\
& 4 \quad \operatorname{Quicksort}(A, q+1, r) \quad 4 \quad \text { if } A[j] \leq x \\
& \text { Partition }(A, p, r) \\
& 1 \quad x=A[r] \\
& 2 i=p-1 \\
& i=i+1 \\
& \text { exchange } A[i] \text { with } A[j] \\
& \text { exchange } A[i+1] \text { with } A[r] \\
& \text { return } i+1 \\
& c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& \text { total number of } \\
& \text { comparisons }
\end{aligned}
$$

Average number of comparisons

Quicksort (A, p, r)	$\operatorname{Partition}(A, p, r)$
1 if $p<r$	$1 \quad x=A[r]$
$2 q=\operatorname{Partition}(A, p, r)$	$2 i=p-1$
$3 \operatorname{Quicksort}(A, p, q-1)$	3 for $j=p$ to $r-1$
$4 \operatorname{Quicksort}(A, q+1, r)$	4 if $A[j] \leq x$
	$5 \quad i=i+1$
	6 exchange $A[i]$ with $A[j]$
	7 exchange $A[i+1]$ with $A[r]$
	8 return $i+1$

Average number of comparisons

Quicksort (A, p, r)	Partition (A, p, r)
1 if $p<r$	$1 \quad x=A[r]$
$2 \quad q=\operatorname{Partition}(A, p, r)$	$2 i=p-1$
3 Quicksort ($A, p, q-1$)	3 for $j=p$ to $r-1$
$4 \operatorname{QUicksort}(A, q+1, r)$	4 if $A[j] \leq x$
	$5 \quad i=i+1$
	6 exchange $A[i]$ with $A[j]$
	7 exchange $A[i+1]$ with $A[r]$
	8 return $i+1$

Average number of comparisons

$$
\begin{aligned}
c_{n} & =n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
c_{n} & =n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
n c_{n} & =n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right)
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
c_{n} & =n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
n c_{n} & =n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right)
\end{aligned}
$$

$$
(n-1) c_{n-1}=(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right) \quad \text { Replace } n \rightarrow n-1
$$

Average number of comparisons

$$
\begin{aligned}
c_{n} & =n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
n c_{n} & \left.=n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \cdots\right) \quad \text { subtract } \\
(n-1) c_{n-1} & =(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right) \cdots \quad . \quad
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
& c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
& n c_{n}=n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) . \\
& \text { subtract } \\
& (n-1) c_{n-1}=(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right)- \\
& n c_{n}-(n-1) c_{n-1}=2(n-1)+2 c_{n-1} \Longrightarrow
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
& c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
& n c_{n}=n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) . \\
& \text { subtract } \\
& (n-1) c_{n-1}=(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right)- \\
& n c_{n}-(n-1) c_{n-1}=2(n-1)+2 c_{n-1} \Longrightarrow \\
& c_{n}=\frac{2 n-1}{n}+\frac{(n+1) c_{n-1}}{n}
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
& c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
& n c_{n}=n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) . \\
& \text { subtract } \\
& (n-1) c_{n-1}=(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right)- \\
& n c_{n}-(n-1) c_{n-1}=2(n-1)+2 c_{n-1} \Longrightarrow \\
& c_{n}=\frac{2 n-1}{n}+\frac{(n+1) c_{n-1}}{n} \Longrightarrow \text { divide by } n+1
\end{aligned}
$$

Average number of comparisons

$$
\begin{aligned}
& c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
& =n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
& n c_{n}=n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) . \\
& \text { subtract } \\
& (n-1) c_{n-1}=(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right)- \\
& n c_{n}-(n-1) c_{n-1}=2(n-1)+2 c_{n-1} \Longrightarrow \\
& c_{n}=\frac{2 n-1}{n}+\frac{(n+1) c_{n-1}}{n} \Longrightarrow \text { divide by } n+1 \\
& \frac{c_{n}}{n+1}=\frac{2}{n+1}-\frac{1}{n(n+1)}+\frac{c_{n-1}}{n}
\end{aligned}
$$

Average number of comparisons

$$
\begin{gathered}
c_{n}=n+\frac{1}{n}\left[\left(c_{0}+c_{n-1}\right)+\left(c_{1}+c_{n-2}\right)+\ldots+\left(c_{n-1}+c_{0}\right)\right] \\
=n+\frac{2}{n}\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \Longrightarrow \\
n c_{n}=n^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-1}\right) \cdots \cdots \\
(n-1) c_{n-1}=(n-1)^{2}+2\left(c_{0}+c_{1}+\ldots+c_{n-2}\right) \cdots \cdots \cdots \\
n c_{n}-(n-1) c_{n-1}=2(n-1)+2 c_{n-1} \Longrightarrow \\
c_{n}=\frac{2 n-1}{n}+\frac{(n+1) c_{n-1}}{n} \Longrightarrow \text { divide by } n+1 \\
\frac{c_{n}}{n+1}=\frac{2}{n+1}-\frac{1}{n(n+1)}+\frac{c_{n-1}}{n} \leq \frac{2}{n+1}+\frac{c_{n-1}}{n}
\end{gathered}
$$

Average number of comparisons
$\frac{c_{n}}{n+1} \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad$ replace $n \rightarrow n-1$

Average number of comparisons

$$
\begin{aligned}
\frac{c_{n}}{n+1} & \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad \text { replace } n \rightarrow n-1 \\
& =\frac{c_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1}=\frac{c_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1}
\end{aligned}
$$

Average number of comparisons

$$
\frac{c_{n}}{n+1} \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad \text { replace } n \rightarrow n-1
$$

$$
\begin{aligned}
& =\frac{c_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1}=\frac{c_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1} \\
& =\ldots=\frac{c_{1}}{2}+2\left(\frac{1}{n+1}+\frac{1}{n}+\ldots+\frac{1}{3}\right)
\end{aligned}
$$

Average number of comparisons

$$
\frac{c_{n}}{n+1} \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad \text { replace } n \rightarrow n-1
$$

$$
=\frac{c_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1}=\frac{c_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1}
$$

$$
=\ldots=\frac{c_{1}}{2}+2\left(\frac{1}{n+1}+\frac{1}{n}+\ldots+\frac{1}{3}\right)
$$

$$
=\frac{c_{1}}{2}+2 \sum_{i=2}^{n} \frac{1}{i+1}
$$

Average number of comparisons

$$
\frac{c_{n}}{n+1} \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad \text { replace } n \rightarrow n-1
$$

$$
=\frac{c_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1}=\frac{c_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1}
$$

$$
=\ldots=\frac{c_{1}}{2}+2\left(\frac{1}{n+1}+\frac{1}{n}+\ldots+\frac{1}{3}\right)
$$

$$
=\frac{c_{1}}{2}+2 \sum_{i=2}^{n} \frac{1}{i+1} \leq 2 \sum_{i=1}^{n} \frac{1}{i}
$$

Average number of comparisons

$$
\frac{c_{n}}{n+1} \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad \text { replace } n \rightarrow n-1
$$

$$
=\frac{c_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1}=\frac{c_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1}
$$

$$
=\ldots=\frac{c_{1}}{2}+2\left(\frac{1}{n+1}+\frac{1}{n}+\ldots+\frac{1}{3}\right) \quad \text { Harmonic series }
$$

$$
=\frac{c_{1}}{2}+2 \sum_{i=2}^{n} \frac{1}{i+1} \leq 2 \sum_{i=1}^{n} \frac{1}{i}=2 H_{n} \approx 2 \log _{\mathrm{e}}(n) \Longrightarrow
$$

Average number of comparisons

$$
\frac{c_{n}}{n+1} \leq \frac{c_{n-1}}{n}+\frac{2}{n+1} \quad \text { replace } n \rightarrow n-1
$$

$$
=\frac{c_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1}=\frac{c_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1}
$$

$$
=\ldots=\frac{c_{1}}{2}+2\left(\frac{1}{n+1}+\frac{1}{n}+\ldots+\frac{1}{3}\right) \quad \text { Harmonic series }
$$

$$
=\frac{c_{1}}{2}+2 \sum_{i=2}^{n} \frac{1}{i+1} \leq 2 \sum_{i=1}^{n} \frac{1}{i}=2 H_{n} \approx 2 \log _{\mathrm{e}}(n) \Longrightarrow
$$

$$
c_{n} \leq 2(n+1) \log _{\mathrm{e}}(n)=2(n+1) \frac{\log _{2} n}{\log _{2} \mathrm{e}} \approx 1.39\left(n \log _{2} n+\log _{2} n\right)=\mathrm{O}(n \log n)
$$

Average number of comparisons, take II (1/4)

- At most n calls to partition over the execution of quicksort because every time partition is called, it will handle at least one element
- Every call to the partition takes $\mathrm{O}(1)+$ lines $3-6$ (focus on the number of comparisons)

```
Partition( }A,p,r
1 x = A[r]
2 i = p-1
3 for }j=p\mathrm{ to }r-
if }A[j]\leq
5 i = i+1
6 exchange }A[i]\mathrm{ with }A[j
    exchange }A[i+1]\mathrm{ with }A[r
8 return i + 1
```


Average number of comparisons, take II (1/4)

- At most n calls to partition over the execution of quicksort because every time partition is called, it will handle at least one element
- Every call to the partition takes $\mathrm{O}(1)+$ lines 3-6 (focus on the number of comparisons)

Partition (A, p, r)
1
$2=A[r]$
2

If the entire quicksort requires m comparisons, then its running time is $\mathrm{O}(n+m)$. Let's estimate m !

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running time is $\mathrm{O}(n+m)$. Let's estimate m !

Notation

- A is a set containing elements $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, where z_{i} is the i-th smallest element - A 's are not presumed to be sorted

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running time is $\mathrm{O}(n+m)$. Let's estimate m !

Notation

- A is a set containing elements $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, where z_{i} is the i-th smallest element - A 's are not presumed to be sorted
- $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ is a set that contains elements from z_{i} to z_{j}

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running time is $\mathrm{O}(n+m)$. Let's estimate m !

Notation

- A is a set containing elements $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, where z_{i} is the i-th smallest element - A 's are not presumed to be sorted
- $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ is a set that contains elements from z_{i} to z_{j}

How many times does quicksort compare elements z_{i} and z_{j} ?

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running time is $\mathrm{O}(n+m)$. Let's estimate m !

Notation

- A is a set containing elements $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, where z_{i} is the i-th smallest element - A 's are not presumed to be sorted
- $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ is a set that contains elements from z_{i} to z_{j}

How many times does quicksort compare elements z_{i} and z_{j} ?

- Any pair of elements of A is compared at most once... because elements are only compared to the pivot element.
- Reminder: Once used, the pivot element is not used again.

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running time is $\mathrm{O}(n+m)$. Let's estimate m !

Notation

- A is a set containing elements $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, where z_{i} is the i-th smallest element - A 's are not presumed to be sorted
- $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ is a set that contains elements from z_{i} to z_{j}

How many times does quicksort compare elements z_{i} and z_{j} ?

- Any pair of elements of A is compared at most once... because elements are only compared to the pivot element.
- Reminder: Once used, the pivot element is not used again.

Hence, $m_{i j}=1$, if z_{i} is compared to z_{j}, and 0 otherwise.

Average number of comparisons, take II (3/4)

Hence, $m_{i j}=1$, if z_{i} is compared to z_{j}, and 0 otherwise.
Total number of comparisons: $m=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j}$

Average number of comparisons, take II (3/4)

Hence, $m_{i j}=1$, if z_{i} is compared to z_{j}, and 0 otherwise.

$$
\begin{array}{r}
\text { Total number of comparisons: } m=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j} \\
\mathrm{E}(m)=\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left(m_{i j}\right) \quad \text { what is } m \text { 's expectation? }
\end{array}
$$

Average number of comparisons, take II (3/4)

Hence, $m_{i j}=1$, if z_{i} is compared to z_{j}, and 0 otherwise.

$$
\begin{aligned}
& \text { Total number of comparisons: } m=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j} \\
& \mathrm{E}(m)=\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left(m_{i j}\right) \quad \text { what is } m \text { 's expectation? } \\
&=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

Average number of comparisons, take II (3/4)

Hence, $m_{i j}=1$, if z_{i} is compared to z_{j}, and 0 otherwise.

$$
\begin{aligned}
& \text { Total number of comparisons: } m=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j} \\
& \mathrm{E}(m)=\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left(m_{i j}\right) \quad \text { what is } m^{\prime} \text { s expectation? } \\
&=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?

Average number of comparisons, take II (3/4)

Hence, $m_{i j}=1$, if z_{i} is compared to z_{j}, and 0 otherwise.

$$
\begin{aligned}
& \text { Total number of comparisons: } m=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j} \\
& \mathrm{E}(m)=\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} m_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left(m_{i j}\right) \quad \text { what is } m \text { 's expectation? } \\
&=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?
- To compare them we need to select z_{i} or z_{j} as pivots.

Average number of comparisons, take II (4/4)

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?
- To compare them we need to select z_{i} or z_{j} as pivots.

Average number of comparisons, take II (4/4)

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?
- To compare them we need to select z_{i} or z_{j} as pivots.
- $Z_{i j}$ has $j-i+1$ elements. Selecting one of them as the first pivot has a probability of $1 /(j-i+1)$.

Average number of comparisons, take II (4/4)

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?
- To compare them we need to select z_{i} or z_{j} as pivots.
- $Z_{i j}$ has $j-i+1$ elements. Selecting one of them as the first pivot has a probability of $1 /(j-i+1)$.
$\operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}=\operatorname{Pr}\left\{z_{i}\right.$ or z_{j} are the first pivots $\}=\frac{2}{j-i+1}$

Average number of comparisons, take II (4/4)

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?
- To compare them we need to select z_{i} or z_{j} as pivots.
- $Z_{i j}$ has $j-i+1$ elements. Selecting one of them as the first pivot has a probability of $1 /(j-i+1)$.

$$
\begin{aligned}
& \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}=\operatorname{Pr}\left\{z_{i} \text { or } z_{j} \text { are the first pivots }\right\}=\frac{2}{j-i+1} \\
& \mathrm{E}(m)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

Average number of comparisons, take II (4/4)

- Note that when the pivot element x is $z_{i}<x<z_{j}, z_{i}$ and z_{j} are not going to be compared. Why?
- To compare them we need to select z_{i} or z_{j} as pivots.
- $Z_{i j}$ has $j-i+1$ elements. Selecting one of them as the first pivot has a probability of $1 /(j-i+1)$.

$$
\begin{aligned}
& \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}=\operatorname{Pr}\left\{z_{i} \text { or } z_{j} \text { are the first pivots }\right\}=\frac{2}{j-i+1} \\
& \begin{aligned}
& \mathrm{E}(m)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& k=j-i \text {, then } \mathrm{E}(m)=\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k+1}<\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \quad \begin{array}{l}
\text { Similar to the } \\
\text { previous proof }
\end{array} \\
& \approx \sum_{i=1}^{n-1} \mathrm{O}(\log n)=\mathrm{O}(n \log n)
\end{aligned}
\end{aligned}
$$

Slides (with potential revisions)
lampos.net/slides/quicksort2019.pdf

end_of_lecture

