
COMP0005 (Algorithms)

Quicksort

Vasileios Lampos
Computer Science, UCL

@lampos

lampos.net www

Slides (with potential revisions)
lampos.net/slides/quicksort2019.pdf

https://www.lampos.net/slides/quicksort2019.pdf

About this lecture

• Quicksort (yet another sorting algorithm)
— Description
— Performance analysis

• Material
— Cormen, Leiserson, Rivest and Stein. Introduction

to Algorithms. MIT Press, 3rd Edition, 2009
(mainly Chapter 7)

— Alternative slides at https://algs4.cs.princeton.edu/lectures/
(Sedgewick and Wayne)

https://algs4.cs.princeton.edu/lectures/

Quicksort divides & conquers

Given an array A with n elements, A[1…n]:

• DIVIDE (step 1) 
Partition, i.e. re-arrange the elements of, array A[1…n] so that
for some element A[q]:
1. all elements on the left of A[q], i.e. A[1…q−1], are less than or

equal to A[q], and
2. all elements on the right of A[q], i.e. A[q+1…n], are greater

than or equal to A[q].  

Quicksort divides & conquers

Given an array A with n elements, A[1…n]:

• DIVIDE (step 1) 
Partition, i.e. re-arrange the elements of, array A[1…n] so that
for some element A[q]:
1. all elements on the left of A[q], i.e. A[1…q−1], are less than or

equal to A[q], and
2. all elements on the right of A[q], i.e. A[q+1…n], are greater

than or equal to A[q].  

• CONQUER (step 2) 
Sort sub-arrays A[1…q−1] and A[q+1…n] by recursive
executions of step 1.  

Quicksort divides & conquers

Given an array A with n elements, A[1…n]:

• DIVIDE (step 1) 
Partition, i.e. re-arrange the elements of, array A[1…n] so that
for some element A[q]:
1. all elements on the left of A[q], i.e. A[1…q−1], are less than or

equal to A[q], and
2. all elements on the right of A[q], i.e. A[q+1…n], are greater

than or equal to A[q].  

• CONQUER (step 2) 
Sort sub-arrays A[1…q−1] and A[q+1…n] by recursive
executions of step 1.  

• COMBINE (step 3) 
Just by joining the sorted sub-arrays we obtain a sorted array.

Quicksort divides & conquers

Given an array A with n elements, A[1…n]:

• DIVIDE (step 1) 
Partition, i.e. re-arrange the elements of, array A[1…n] so that
for some element A[q]:
1. all elements on the left of A[q], i.e. A[1…q−1], are less than or

equal to A[q], and
2. all elements on the right of A[q], i.e. A[q+1…n], are greater

than or equal to A[q].  

• CONQUER (step 2) 
Sort sub-arrays A[1…q−1] and A[q+1…n] by recursive
executions of step 1.  

• COMBINE (step 3) 
Just by joining the sorted sub-arrays we obtain a sorted array.

Quicksort divides & conquers

Note:
• We will assume that the

elements of A are distinct.

• We will be sorting the elements
of A in an ascending order.

Quicksort was…
• invented by Tony Hoare in 1959
• published in 1961 (paper) 
 
 
 
 
 
 
 
 
 
 
 

from Wikipedia

https://dl.acm.org/citation.cfm?id=366644

Quicksort was…
• invented by Tony Hoare in 1959
• published in 1961 (paper) 
 
 
 
 
 
 
 
 
 
 
 

from Wikipedia

https://dl.acm.org/citation.cfm?id=366644

Quicksort was…
• invented by Tony Hoare in 1959
• published in 1961 (paper) 
 
 
 
 
 
 
 
 
 
 
 

from Wikipedia

that was the
entire paper!

https://dl.acm.org/citation.cfm?id=366644

Quicksort was…
• invented by Tony Hoare in 1959
• published in 1961 (paper) 
 
 
 
 
 

• published with an analysis in 1962 (paper) 
 
 
 
 
 

from Wikipedia

that was the
entire paper!

https://dl.acm.org/citation.cfm?id=366644
https://academic.oup.com/comjnl/article/5/1/10/395338

Quicksort was…
• invented by Tony Hoare in 1959
• published in 1961 (paper) 
 
 
 
 
 

• published with an analysis in 1962 (paper) 
 
 
 
 
 

from Wikipedia

that was the
entire paper!

https://dl.acm.org/citation.cfm?id=366644
https://academic.oup.com/comjnl/article/5/1/10/395338

Quicksort…

• is still being used (in principle, i.e. its
optimised versions) 

from Wikipedia

Quicksort…

• is still being used (in principle, i.e. its
optimised versions) 

• is efficient

— O(n logn) on average

— Θ(n logn) best case

— Θ(n2) worst case

(for an array with n elements) 
from Wikipedia

Quicksort…

• is still being used (in principle, i.e. its
optimised versions) 

• is efficient

— O(n logn) on average

— Θ(n logn) best case

— Θ(n2) worst case

(for an array with n elements) 

• requires a small amount of memory
(in-place algorithm)

from Wikipedia

Quicksort7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

p r

… 6 5 1 … 22 9 2 …}
sub-array A[p…r]

both p, r are array indices

Quicksort

p q r

… 1 2 6 … 22 9 5 …}
sub-array A[p…r]

p, r, q are array indices

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

Quicksort — Partition

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

Partition is the central sorting
operation of quicksort

p q? r

… 1 2 6 … 22 9 5 …}
sub-array A[p…r]

p, r, q are array indices

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i p,j r,x

6 5 1 3 2 4

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4 x = 4, A[j = p+1] = 5 > x

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

and A[i]↔A[j]

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

and A[i]↔A[j]

A[j = p+3] = 3 < x, i = i+1

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

and A[i]↔A[j]

A[j = p+3] = 3 < x, i = i+1

and A[i]↔A[j]

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

and A[i]↔A[j]

A[j = p+3] = 3 < x, i = i+1

and A[i]↔A[j]

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

and A[i]↔A[j]

A[j = p+3] = 3 < x, i = i+1

and A[i]↔A[j]

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1

and A[i]↔A[j]

A[j = p+3] = 3 < x, i = i+1

and A[i]↔A[j]

j = r−1, A[i+1]↔A[r]

i p,j r,x

6 5 1 3 2 4 pivot element

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i p,j r,x i p,j r,x

1 3 2 4 6 5

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i,j i j

1 3 2 4 6 5

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

i p,j r,x i p,j r,x

1 3 2 4 6 5

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j i j

1 3 2 4 5 6

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

i,j i j

1 3 2 4 6 5

i p,j r,x i p,j r,x

1 3 2 4 6 5

Step-by-step example

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i j i j

1 2 3 4 5 6

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

i j i j

1 3 2 4 5 6

i,j i j

1 3 2 4 6 5

i p,j r,x i p,j r,x

1 3 2 4 6 5

.

Why does quicksort work?

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

• As i goes through the array from left to
right, no element greater than the pivot
element (= 4) is left behind it. When such
element is identified, it is swapped.

Why does quicksort work?

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

• As i goes through the array from left to
right, no element greater than the pivot
element (= 4) is left behind it. When such
element is identified, it is swapped.

• Elements i+1 to j−1 are always greater
than the pivot element.

Quicksort’s performance

• The performance is affected by the choice of the pivot element
during partitioning: balanced vs. unbalanced outcome 

Quicksort’s performance

• The performance is affected by the choice of the pivot element
during partitioning: balanced vs. unbalanced outcome 

• Worst case: Θ(n2)

— when partitioning is always completely unbalanced, i.e. the
choice of pivot generates sub-arrays that always have n−1
and 0 elements, respectively

— when the array is already sorted 

Quicksort’s performance

• The performance is affected by the choice of the pivot element
during partitioning: balanced vs. unbalanced outcome 

• Worst case: Θ(n2)

— when partitioning is always completely unbalanced, i.e. the
choice of pivot generates sub-arrays that always have n−1
and 0 elements, respectively

— when the array is already sorted 

• Best case: Θ(n logn)

— when partitioning is always fairly balanced, i.e. the choice
of pivot generates sub-arrays that always have ⌊n/2⌋ and
⌈n/2⌉−1 elements, respectively

Quicksort’s performance

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

Step-by-step example for worst case
i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i,j

1 2 3 4 5 6

i p,j r,x

1 2 3 4 5 6

i,j

1 2 3 4 5 6

1 2 3 4 5 6 .

Recall previous example (average case)

i j i j

1 2 3 4 5 6

i p,j r,x

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

6 5 1 3 2 4

i j

1 5 6 3 2 4

i j

1 5 6 3 2 4

i j

1 3 6 5 2 4

i j

1 3 6 5 2 4

i j

1 3 2 5 6 4

i j

1 3 2 4 6 5

i j i j

1 3 2 4 5 6

i,j i j

1 3 2 4 6 5

i p,j r,x i p,j r,x

1 3 2 4 6 5

.

Cost estimation (running time)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

• Cost is mainly affected by the
partition operation, and
especially by the for-loop in it
that performs n−1 comparisons

• The cost for a single partition
operation is: Θ(n), where  
n = r−p+1

Worst case cost estimation example (n = 8)

n = 8 n-dimensional array, cost: c ⁎ 8

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

P 60 cost: c ⁎ 7

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

P 60

P 50

cost: c ⁎ 7

cost: c ⁎ 6

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

P 60

P 50

P 40

cost: c ⁎ 7

cost: c ⁎ 6

cost: c ⁎ 5

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

P 60

P 50

P 40

P 03

cost: c ⁎ 7

cost: c ⁎ 6

cost: c ⁎ 5

cost: c ⁎ 4

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

P 60

P 50

P 40

P 03

cost: c ⁎ 7

cost: c ⁎ 6

cost: c ⁎ 5

P 02

cost: c ⁎ 4

cost: c ⁎ 3

Worst case cost estimation example (n = 8)

n = 8

n − 1 = 7 P 0

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ (7+1)

P 60

P 50

P 40

P 03

cost: c ⁎ 7

cost: c ⁎ 6

cost: c ⁎ 5

P 02

P 01

cost: c ⁎ 4

cost: c ⁎ 3

total cost: c ⁎ (8+8…+2) = c ⁎ 43 ≈ Θ(n2)

cost: c ⁎ 2

Worst case cost analysis (1/3)

• Performing partition once on an n-dimensional array, generates
2 sub-arrays with q and n−q−1 elements

• Performing partition once on an n-dimensional array, generates
2 sub-arrays with q and n−q−1 elements

• The cost of partitioning an array with n elements is Θ(n)

Worst case cost analysis (1/3)

• Performing partition once on an n-dimensional array, generates
2 sub-arrays with q and n−q−1 elements

• The cost of partitioning an array with n elements is Θ(n)

T(n) = (T(q) + T(n − q − 1)) + Θ(n)So, the cost of quicksort is:

Worst case cost analysis (1/3)

T(n) = max
0≤q≤n−1

(T(q) + T(n − q − 1)) + Θ(n) (1)

• Performing partition once on an n-dimensional array, generates
2 sub-arrays with q and n−q−1 elements

• The cost of partitioning an array with n elements is Θ(n)

In the worst case, this cost will be maximised, i.e.

T(n) = (T(q) + T(n − q − 1)) + Θ(n)So, the cost of quicksort is:

Worst case cost analysis (1/3)

T(n) = max
0≤q≤n−1

(T(q) + T(n − q − 1)) + Θ(n) (1)

T(n) = O(n2) ≤ cn2 , where c > 0 (2)

• Performing partition once on an n-dimensional array, generates
2 sub-arrays with q and n−q−1 elements

• The cost of partitioning an array with n elements is Θ(n)

In the worst case, this cost will be maximised, i.e.

Let’s now assume that:

T(n) = (T(q) + T(n − q − 1)) + Θ(n)So, the cost of quicksort is:

Worst case cost analysis (1/3)

T(n) = max
0≤q≤n−1

(T(q) + T(n − q − 1)) + Θ(n) (1)

T(n) = O(n2) ≤ cn2 , where c > 0 (2)

• Performing partition once on an n-dimensional array, generates
2 sub-arrays with q and n−q−1 elements

• The cost of partitioning an array with n elements is Θ(n)

In the worst case, this cost will be maximised, i.e.

Let’s now assume that:

and substitute (1) in (2): T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

T(n) = (T(q) + T(n − q − 1)) + Θ(n)So, the cost of quicksort is:

Worst case cost analysis (1/3)

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)

Worst case cost analysis (2/3)

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)
g(q)

So, we want to maximise g(q) = q2 + (n − q − 1)2

Worst case cost analysis (2/3)

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)
g(q)

So, we want to maximise g(q) = q2 + (n − q − 1)2

∂g
∂q

= 2q + 2(n − q − 1)(−1) = 4q − 2n + 2

∂g
∂q

= 0 ⟹ q =
1
2

(n − 1)

Worst case cost analysis (2/3)

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)
g(q)

So, we want to maximise g(q) = q2 + (n − q − 1)2

∂g
∂q

= 2q + 2(n − q − 1)(−1) = 4q − 2n + 2

∂g
∂q

= 0 ⟹ q =
1
2

(n − 1)

∂2g
∂q2

= 4 > 0

Worst case cost analysis (2/3)

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + Θ(n)

= c max
0≤q≤n−1

(q2 + (n − q − 1)2) + Θ(n)
g(q)

So, we want to maximise g(q) = q2 + (n − q − 1)2

∂g
∂q

= 2q + 2(n − q − 1)(−1) = 4q − 2n + 2

∂g
∂q

= 0 ⟹ q =
1
2

(n − 1)

∂2g
∂q2

= 4 > 0

this is a local minimum of g(q)

Worst case cost analysis (2/3)

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

g(0) = g(n − 1) = (n − 1)2, g (n − 1
2) =

(n − 1)2

2

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

g(0) = g(n − 1) = (n − 1)2, g (n − 1
2) =

(n − 1)2

2

T(n) ≤ c(n − 1)2 + Θ(n) = cn2 − 2cn + c + Θ(n) ≤ cn2

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

g(0) = g(n − 1) = (n − 1)2, g (n − 1
2) =

(n − 1)2

2

T(n) ≤ c(n − 1)2 + Θ(n) = cn2 − 2cn + c + Θ(n) ≤ cn2

which results in T(n) = O(n2)

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

g(0) = g(n − 1) = (n − 1)2, g (n − 1
2) =

(n − 1)2

2

T(n) ≤ c(n − 1)2 + Θ(n) = cn2 − 2cn + c + Θ(n) ≤ cn2

which results in T(n) = O(n2)

Also: T(n) ≥ c
1
2

(n − 1)2 + Θ(n) =
cn2

2
+

c
2

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

g(0) = g(n − 1) = (n − 1)2, g (n − 1
2) =

(n − 1)2

2

T(n) ≤ c(n − 1)2 + Θ(n) = cn2 − 2cn + c + Θ(n) ≤ cn2

which results in T(n) = O(n2)

Also: T(n) ≥ c
1
2

(n − 1)2 + Θ(n) =
cn2

2
+

c
2

T(n) = Ω(n2)which results in

Worst case cost analysis (3/3)

T(n) ≤ c max
0≤q≤n−1

g(q) + Θ(n) q =
1
2

(n − 1)g(q)min of for

max of g(q) for q = 0 or q = n − 1

g(0) = g(n − 1) = (n − 1)2, g (n − 1
2) =

(n − 1)2

2

T(n) ≤ c(n − 1)2 + Θ(n) = cn2 − 2cn + c + Θ(n) ≤ cn2

which results in T(n) = O(n2)

Also: T(n) ≥ c
1
2

(n − 1)2 + Θ(n) =
cn2

2
+

c
2

T(n) = Ω(n2)which results in

Thus, T(n) = Θ(n2) .

Best case cost estimation example (n = 8)

n = 8

n − 1 = 3 P 4

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ 7

P 11 P 12

P 01

cost: c ⁎ 5

cost: c ⁎ 2

total cost: c ⁎ (8+7+5+2) = c ⁎ 22 ≈ Θ(n logn)

Best case cost analysis
If the splits are even, partition produces two sub-problems,
each of which has no size more than n/2.

Best case cost analysis
If the splits are even, partition produces two sub-problems,
each of which has no size more than n/2.

Thus the running time is equal to:

T(n) = 2T(n/2) + Θ(n)

Best case cost analysis
If the splits are even, partition produces two sub-problems,
each of which has no size more than n/2.

Thus the running time is equal to:

T(n) = 2T(n/2) + Θ(n)

Using case 2 of the master theorem (see Theorem 4.1 in
Cormen et al. textbook, 3rd edition), this has the solution:

T(n) = Θ(n log n)

For T(n) = aT(n/b) + f(n),
if f(n) = Θ (nlogb a), then T(n) = Θ (nlogb a log n),
where b = 2 and a = 2.

• Instead of using the right-most element, A[r], as the pivot…

Randomised quicksort

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

• Instead of using the right-most element, A[r], as the pivot…

Randomised quicksort

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.
• Why? By adding randomisation, obtaining the average expected

performance is more likely than obtaining the worst case
performance.

Average number of comparisons (1/3)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

Average number of comparisons (1/3)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

cn = 1 + (n − 1) + …

Average number of comparisons (1/3)

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

Average number of comparisons (1/3)

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

total number of
comparisons

Average number of comparisons (1/3)

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

total number of
comparisons

probability of a
split — n pivot

choices

Average number of comparisons (1/3)

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

total number of
comparisons

probability of a
split — n pivot

choices

sub-array sizes

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

Average number of comparisons (2/3)

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)

Average number of comparisons (2/3)

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

Average number of comparisons (2/3)

Replace n → n−1

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

Average number of comparisons (2/3)

subtract

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

ncn − (n − 1)cn−1 = 2(n − 1) + 2cn−1 ⟹

Average number of comparisons (2/3)

subtract

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

ncn − (n − 1)cn−1 = 2(n − 1) + 2cn−1 ⟹

Average number of comparisons (2/3)

subtract

cn =
2n − 1

n
+

(n + 1)cn−1

n
⟹

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

ncn − (n − 1)cn−1 = 2(n − 1) + 2cn−1 ⟹

Average number of comparisons (2/3)

subtract

cn =
2n − 1

n
+

(n + 1)cn−1

n
⟹ divide by n + 1

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

ncn − (n − 1)cn−1 = 2(n − 1) + 2cn−1 ⟹

cn

n + 1
=

2
n + 1

−
1

n(n + 1)
+

cn−1

n

Average number of comparisons (2/3)

subtract

cn =
2n − 1

n
+

(n + 1)cn−1

n
⟹ divide by n + 1

cn = n +
1
n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]

= n +
2
n (c0 + c1 + … + cn−1) ⟹

ncn = n2 + 2 (c0 + c1 + … + cn−1)
(n − 1)cn−1 = (n − 1)2 + 2 (c0 + c1 + … + cn−2)

ncn − (n − 1)cn−1 = 2(n − 1) + 2cn−1 ⟹

cn

n + 1
=

2
n + 1

−
1

n(n + 1)
+

cn−1

n

Average number of comparisons (2/3)

subtract

cn =
2n − 1

n
+

(n + 1)cn−1

n
⟹ divide by n + 1

≤
2

n + 1
+

cn−1

n

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

=
cn−2

n − 1
+

2
n

+
2

n + 1
=

cn−3

n − 2
+

2
n − 1

+
2
n

+
2

n + 1

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

=
cn−2

n − 1
+

2
n

+
2

n + 1
=

cn−3

n − 2
+

2
n − 1

+
2
n

+
2

n + 1

= … =
c1

2
+ 2 (1

n + 1
+

1
n

+ … +
1
3)

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

=
cn−2

n − 1
+

2
n

+
2

n + 1
=

cn−3

n − 2
+

2
n − 1

+
2
n

+
2

n + 1

= … =
c1

2
+ 2 (1

n + 1
+

1
n

+ … +
1
3)

=
c1

2
+ 2

n

∑
i=2

1
i + 1

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

=
cn−2

n − 1
+

2
n

+
2

n + 1
=

cn−3

n − 2
+

2
n − 1

+
2
n

+
2

n + 1

= … =
c1

2
+ 2 (1

n + 1
+

1
n

+ … +
1
3)

=
c1

2
+ 2

n

∑
i=2

1
i + 1

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

≤ 2
n

∑
i=1

1
i

=
cn−2

n − 1
+

2
n

+
2

n + 1
=

cn−3

n − 2
+

2
n − 1

+
2
n

+
2

n + 1

= … =
c1

2
+ 2 (1

n + 1
+

1
n

+ … +
1
3)

=
c1

2
+ 2

n

∑
i=2

1
i + 1

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

≤ 2
n

∑
i=1

1
i = 2Hn ≈ 2 loge(n) ⟹

Harmonic series

or ln(n)

=
cn−2

n − 1
+

2
n

+
2

n + 1
=

cn−3

n − 2
+

2
n − 1

+
2
n

+
2

n + 1

= … =
c1

2
+ 2 (1

n + 1
+

1
n

+ … +
1
3)

=
c1

2
+ 2

n

∑
i=2

1
i + 1

cn ≤ 2(n + 1)loge(n) = 2(n + 1)
log2 n
log2 e

≈ 1.39(n log2 n + log2 n) = O(n log n) .

Average number of comparisons (3/3)

cn

n + 1
≤

cn−1

n
+

2
n + 1

replace n → n−1

≤ 2
n

∑
i=1

1
i = 2Hn ≈ 2 loge(n) ⟹

Harmonic series

change of base

or ln(n)

Average number of comparisons, take II (1/4)

• At most n calls to partition over the execution of quicksort
because every time partition is called, it will handle at least
one element

• Every call to the partition takes O(1) + lines 3-6 (focus on
the number of comparisons)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

Average number of comparisons, take II (1/4)

• At most n calls to partition over the execution of quicksort
because every time partition is called, it will handle at least
one element

• Every call to the partition takes O(1) + lines 3-6 (focus on
the number of comparisons)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation
• A is a set containing elements {z1,z2,…,zn}, where zi is the i-th

smallest element — A’s are not presumed to be sorted

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation
• A is a set containing elements {z1,z2,…,zn}, where zi is the i-th

smallest element — A’s are not presumed to be sorted
• Zij = {zi,zi+1,…,zj} is a set that contains elements from zi to zj

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation
• A is a set containing elements {z1,z2,…,zn}, where zi is the i-th

smallest element — A’s are not presumed to be sorted
• Zij = {zi,zi+1,…,zj} is a set that contains elements from zi to zj

How many times does quicksort compare elements zi and zj?

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation
• A is a set containing elements {z1,z2,…,zn}, where zi is the i-th

smallest element — A’s are not presumed to be sorted
• Zij = {zi,zi+1,…,zj} is a set that contains elements from zi to zj

How many times does quicksort compare elements zi and zj?
• Any pair of elements of A is compared at most once… because

elements are only compared to the pivot element.
• Reminder: Once used, the pivot element is not used again.

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation
• A is a set containing elements {z1,z2,…,zn}, where zi is the i-th

smallest element — A’s are not presumed to be sorted
• Zij = {zi,zi+1,…,zj} is a set that contains elements from zi to zj

How many times does quicksort compare elements zi and zj?
• Any pair of elements of A is compared at most once… because

elements are only compared to the pivot element.
• Reminder: Once used, the pivot element is not used again.

Hence, mij = 1, if zi is compared to zj, and 0 otherwise.

Average number of comparisons, take II (3/4)

Hence, mij = 1, if zi is compared to zj, and 0 otherwise.

 Total number of comparisons: m =
n−1

∑
i=1

n

∑
j=i+1

mij

Average number of comparisons, take II (3/4)

Hence, mij = 1, if zi is compared to zj, and 0 otherwise.

 Total number of comparisons: m =
n−1

∑
i=1

n

∑
j=i+1

mij

E(m) = E
n−1

∑
i=1

n

∑
j=i+1

mij =
n−1

∑
i=1

n

∑
j=i+1

E (mij) what is m’s expectation?

Average number of comparisons, take II (3/4)

Hence, mij = 1, if zi is compared to zj, and 0 otherwise.

 Total number of comparisons: m =
n−1

∑
i=1

n

∑
j=i+1

mij

E(m) = E
n−1

∑
i=1

n

∑
j=i+1

mij =
n−1

∑
i=1

n

∑
j=i+1

E (mij) what is m’s expectation?

=
n−1

∑
i=1

n

∑
j=i+1

Pr{zi is compared to zj}

Average number of comparisons, take II (3/4)

Hence, mij = 1, if zi is compared to zj, and 0 otherwise.

 Total number of comparisons: m =
n−1

∑
i=1

n

∑
j=i+1

mij

E(m) = E
n−1

∑
i=1

n

∑
j=i+1

mij =
n−1

∑
i=1

n

∑
j=i+1

E (mij) what is m’s expectation?

=
n−1

∑
i=1

n

∑
j=i+1

Pr{zi is compared to zj}

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

Average number of comparisons, take II (3/4)

Hence, mij = 1, if zi is compared to zj, and 0 otherwise.

 Total number of comparisons: m =
n−1

∑
i=1

n

∑
j=i+1

mij

E(m) = E
n−1

∑
i=1

n

∑
j=i+1

mij =
n−1

∑
i=1

n

∑
j=i+1

E (mij) what is m’s expectation?

=
n−1

∑
i=1

n

∑
j=i+1

Pr{zi is compared to zj}

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

• To compare them we need to select zi or zj as pivots.

Average number of comparisons, take II (4/4)

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

• To compare them we need to select zi or zj as pivots.

Average number of comparisons, take II (4/4)

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

• To compare them we need to select zi or zj as pivots.
• Zij has j−i+1 elements. Selecting one of them as the first pivot

has a probability of 1/(j−i+1).

Average number of comparisons, take II (4/4)

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

• To compare them we need to select zi or zj as pivots.
• Zij has j−i+1 elements. Selecting one of them as the first pivot

has a probability of 1/(j−i+1).

Pr{zi is compared to zj} = Pr{zi or zj are the first pivots} =
2

j − i + 1

Average number of comparisons, take II (4/4)

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

• To compare them we need to select zi or zj as pivots.
• Zij has j−i+1 elements. Selecting one of them as the first pivot

has a probability of 1/(j−i+1).

Pr{zi is compared to zj} = Pr{zi or zj are the first pivots} =
2

j − i + 1

E(m) =
n−1

∑
i=1

n

∑
j=i+1

Pr{zi is compared to zj} =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

Average number of comparisons, take II (4/4)

• Note that when the pivot element x is zi < x < zj, zi and zj are
not going to be compared. Why?

• To compare them we need to select zi or zj as pivots.
• Zij has j−i+1 elements. Selecting one of them as the first pivot

has a probability of 1/(j−i+1).

Pr{zi is compared to zj} = Pr{zi or zj are the first pivots} =
2

j − i + 1

E(m) =
n−1

∑
i=1

n

∑
j=i+1

Pr{zi is compared to zj} =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

k = j − i, then E(m) =
n−1

∑
i=1

n

∑
k=1

2
k + 1

<
n−1

∑
i=1

n

∑
k=1

2
k

≈
n−1

∑
i=1

O (log n) = O (n log n) .

Similar to the
previous proof

end_of_lecture

@lampos

lampos.net www

Slides (with potential revisions)
lampos.net/slides/quicksort2019.pdf

https://twitter.com/lampos
https://lampos.net
https://www.lampos.net/slides/quicksort2019.pdf

