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Part A

Estimating flu prevalence using
web search activity
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From web searches to influenza (flu) rates
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Eysenbach (2006), AMIA; Polgreen et al. (2008), Clin. Infect. Dis.; Ginsberg et al. (2009), Nature
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Why estimate disease rates from web search?

e Complements conventional syndromic surveillance systems

> larger cohort

> broader demographic coverage

> broader, more granular geographic coverage

» not affected by closure days and other temporal biases
> timeliness

> lower cost

e Applicable to locations that lack an established health surveillance infrastructure

e [rack novel infectious diseases

Conventional (traditional) syndromic surveillance methods: disease prevalence, i.e. the % of infected people
in a population, is determined via doctor (GP) visits and other related indicators, such as laboratory-

confirmed infections, associated hospitalisations or deaths.
Wagner et al. (2018), Sci. Rep.; Budd et al. (2020), Nat. Med.
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Google Flu Trends (GFT) — discontinued

google Org Flu Trends Language: | English (United States) 2

Google.org home
—=00de.0 Explore flu trends around the world
Dengue Trends . - -
We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses aggregated Google search data
Flu Trends to estimate flu activity. Learn more »
Home

 Select country/regior * |

How does this work?

FAQ

Flu activity

I Intense
I High
' Moderate

Low

Minimal

Ginsberg et al. (2009), Nature
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Google Flu Trends (GFT) — regression function

logit(P) = py + p; X logit(Q) + €

P : percentage of doctor visits due to influnza-like illness (ILI)
() : aggregate frequency of a set of automatically selected search queries

Py : regression intercept (bias)
P : regression weight (univariate regression)

€ : independent, zero-centered noise Ginsberg et al. (2009), Nature

Main issue

What if some of the selected queries are spurious or, in general, relate differently to flu rates
compared to other selected search queries? This model makes a very naive assumption.

@lampos Y COMPO0084 - Tracking COVID-19 using online search


https://twitter.com/lampos

Lampos et al. (2015), Sci. Rep.
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ILI rates
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Google Flu Trends (GFT) — shortcomings

rsv—25% —CDC

‘ flu symptoms — 18% ——Google Flu Trends

benzonatate — 6%
symptoms of pneumonia — 6%
upper respiratory infection — 4%

In the original paper (Ginsberg et al., 2009), the GFT model was
“evaluated” on just ~1 flu season! That is not a proper evaluation.
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Web search frequencies & flu rates: a nonlinear relationship
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Lampos et al. (2015), Sci. Rep.
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Multivariate kernels on search query clusters

Composite Gaussian Process (GP) kernel

k(X, X)) = ZkSE c,c)) | + o2 - 8(x,x)

m
>0

c,C: €l Z>O .z < m, C query clusters based on frequency time series

X, X €| where m is the number of search queries we consider

Squared Exponential (SE) kernel

2
le; — ¢ill3
207

kse(e;,€) = o exp | —

Lampos et al. (2015), Sci. Rep.;
Rasmussen, Williams (2006), MIT Press
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Modelling ILI rates with Gaussian Process (GP) kernels

0.09 - Lampos et al. (2015), Sci. Rep. —-—CDC
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ILI rates

Modelling ILI rates with Gaussian Process (GP) kernels
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> 42% mean absolute error reduction compared to Google Flu Trends

Lampos et al. (2015), Sci. Rep. —-—CDC
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> .95 bivariate correlation (previously .89) with CDC rates
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Modelling ILI rates with Gaussian Process (GP) kernels

0.09 - Lampos et al. (2015), Sci. Rep. ——CDC
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| Uncertainty estimates
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> 42% mean absolute error reduction compared to Google Flu Trends
> .95 bivariate correlation (previously .89) with CDC rates
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Autoregression (ARIMAX)

p J q K D
Vi = Z PiYi—aq + 2 WiYi-50—;i T 2 O€r—q + Z Vi€—50—i T Z wih,;  +¢
i=1 i=1 i=1 i=1 i=1

AR and seasonal AR - MA and seasonal MA J GI¥D estvimatjes

e d weeks delay in including past ILI rates as reported by CDC

¢ Choose model parameters based on the Akaike Information Criterion (AlC)

> sometimes past seasons are helpful, but not always

> the most important piece of information is the GP estimate for the ILI rate based on web
search query frequencies
Lampos et al. (2015), Sci. Rep.
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Modelling ILI rates with Gaussian Process kernes & ARIMAX

0.09 - Lampos et al. (2015), Sci. Rep. ——CDC

0.08 - —— @Gaussian Process with AR
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> |ncorporating historical CDC estimates into an autoregression (AR) using ARIMAX
> 27% MAE reduction compared to GFT with AR, 52% over the GP model without AR

» .99 bivariate correlation with CDC
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Feature selection — which search queries to. use?

e Feature selection was based on a temporal relationship

> |s this sufficient? No / not always

e Spurious search queries such as “NBA injury report” or “muscle building supplements” were
still included in the selection

» query clustering: some guarantees for different treatment, but needs a more complex
regression model

e |ntroduce a query filter based on distributional semantics
e No need to use a supervised solution (hard to obtain labels)

e Hybrid combination this with previous feature selection regimes

Lampos et al. (2015), Sci. Rep.; Lampos, Zou, Cox (2017), WWW ‘17
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Query selection based on distributional semantics

Y cos (e e,
i=1 7

im (¢,C) = ——t TP
Zj.il COS (eq, e, ) +y

e ., : embedding vector (trained on Twitter data)

. Lampos, Zou, Cox (2017), WWW '17;
C = {C Ps CN} — a concept about influenza Levy, Goldberg (2014), CoNLL ‘14

Cp : n-grams of a positive context for concept C
C, : n-grams of a negative context for concept C

0 =cos(-)— €]0,1]via(@+ 1)/2 to avoid negative components

Yy € R, toavoid, in theory, division by O
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Query selection based on distributional semantics

Positive context Negative context Most similar queries
]itﬂu “cold flu medicine”
ﬂever Bieber “flu aches”
ﬂu dic Ebola “cold and flu”
GL|I:me icine Wikipedia “cold flu symptoms”
, “colds and flu”
hospital
flu ﬂu aC?ﬁjn
flu GP Ebola “~olds and ﬂun
flu hospital Wikipedia “cold and flu”

flu medicine

“cold flu medicine”

Lampos, Zou, Cox (2017), WWW ‘17

COMP0084 - Tracking COVID-19 using online search

18


https://twitter.com/lampos

Feature selection based on correlation and regularised regression

Lampos, Zou, Cox (2017), WWW ‘17 —-—RCGP (England)
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Feature selection based on correlation and regularised regression

Lampos, Zou, Cox (2017), WWW ‘17 ——RCGP (England)
——Correlation-based feature selection

ILI rates

2013 2014
Examples of problematic query selections

prof. surname: /0% name surname recipes: 21%
name surname: 27% blood game: 12.3%
heating oil: 21% swine flu vaccine side effects: 7.2%
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Hybrid feature selection: distributional semantics and correlation

35 |- Lampos, Zou, Cox (2017), WWW ‘17 ——RCGP (England)
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» 12.3% accuracy improvement in terms of mean absolute error
» .913 bivariate correlation with the ground truth (RCGP ILI rates)
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ROA
UK Health
Security
Agency

gov.uk/government/statistics/
national-flu-and-covid-19-
surveillance-reports-2021-
to-2022-season
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Flu detector

Daily influenza-like iliness rates

Influenza-like illness rate per 100,000 people

fludetector.cs.ucl.ac.uk
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Why estimate disease rates from web search?
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Part B

Transfer learning for disease modelling from web
search activity from one location to another

Zou, Lampos, Cox (2019), WWW ‘19
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Transfer learning across countries from flu models from web search

e Transfer learning in general

> Gain knowledge from one domain/task, apply it to another one

e Transfer learning for estimating flu rates across different countries
» Locations: source (no missing data), target (no disease rates)

> regularised regression model for a source location based on web search activity and
historical disease rates

> map search queries from the source to the target location
— semantic similarity (bilingual if necessary)
— temporal similarity

— hybrid similarity (their linear combination controlled by y)

» transfer regression model
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Transferring a flu model based on web searches: from US to France

ILI rates (z-scored)

20038 2009 2010 2011 2012 2013 2014 2015 2016

How similar are the flu rates between the US and France (FR)?
— temporal differences (e.g. different onset/peak moments), intensity differences
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Transferring a flu model based on web searches: from US to France
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Transferring a flu model based on web searches: from US to Australia
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How similar are the flu rates between the US and Australia (AU)?
— different (=opposite) seasons, significant intensity differences in more recent years
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Transferring a flu model based on web searches: from US to Australia
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Part C
Tracking COVID-19 using online search

Lampos et al. (2021), npj Digit. Med.
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Google search activity

Google Health Trends: frequency Vr.q Of web search query g for a location L during a day d

number of times g was issued by users in location L during day d
Yod= " . . . . T T

total number of searches by users in location L during day d

Unprecedented search frequency trends during the first COVID-19 pandemic waves
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Challenges in modelling COVID-19 using web search activity

e No reliable and not enough ground truth data

» Supervised learning no longer possible — can we use transfer learning?

» Evaluation of any model will be problematic

e Unsupervised learning

> Which search queries to use?

> How do we know our model is related to COVID-19 and not other infectious diseases?

> How do we know our signhal is not affected by other factors such as concern, curiosity,
and media coverage rather than by infection?
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First few hundred (FF100) patient survey (NHS / UKHSA)

cough | e 0. 78
fatigue | 0. 71

fever 0.60

headache 57
muscle ache
appetite loss
shortness of breath
sore throat
joint ache
runny nose
loss of the sense of smell
diarrhoea
sneezing
nausea

vomiting [IIN0.09
 JoXo

Boddington et al.
(2021), Bull. WHO

altered consciousness 0.07
nose bleed [EO0.06

rash [I0.05

seizure 00.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability of occurrence in COVID-19 patients
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Symptom-related search terms — English

» cough: cough, coughing

» fatigue: fatigue

» fever: chills, fever, high temp fever, high temperature

» headache: head ache, headache, headaches, migraine

» muscle ache: muscle ache, muscular pain

» appetite loss: appetite loss, loss of appetite, lost appetite

» shortness of breath: breathing difficulties, breathing difficulty, cant breathe, shortness of
breath, short breath

> |loss of the sense of smell: anosmia, loss of smell, loss smell

> COVID-19 terms: coronavirus, covid, covid-19, covid19
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Symptom-related search terms — Italian

» cough: tosse, tossire

» fatigue: affaticamento, fatica, spossatezza, stanchezza

> fever: alta temperatura, brividi, febbre

> headache: emicrania, mal di testa

> muscle ache: dolore muscolare, dolori muscolari, male ai muscoli, mialgia

> appetite loss: appetito perso, inappetenza, perdita appetito, perdita di appetito

» shortness of breath: difficolta respiratoria, difficolta respiratorie, fiato corto, mancanza di
respiro, respiro corto

> loss of the sense of smell: perdita olfatto

> COVID-19 terms: coronavirus, covid, covid-19, covid19
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Symptom-related search terms — Locations (countries) & languages

Our analysis considered the following countries and corresponding languages:

» United States of America (US), United Kingdom (UK), Australia, Canada — English

> France — French
> |taly — Italian
> South Africa — Zulu, Afrikaans, English, and many more

» Greece — Greek
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A simple COVID-19 prevalence model (1/2)

Query frequencies are noisy

— harmonic smoothing using the frequencies of the past 2 weeks

Query frequencies are not stationary (increasing mean)
— linear detrending

GoogleTrends ~ Explore

® headache

Search term

United Kingdom ¥

+ Compare

9/1/11-8/31/19 ¥ All categories ¥ Web Search ¥

Interest over time

M

the

Sep 1,2011

Feb 1,2014 Jul1,2016 Dec 1, 2018

COMPO0084 - Tracking COVID-19 using online search

37


https://twitter.com/lampos

A simple COVID-19 prevalence model (2/2)

3. For each symptom category, obtain the frequency sum across all its search terms
(cumulative symptom-related search frequency) on a daily basis

4. Apply min-max normalisation on the cumulative frequency of each symptom category;
values become from O to 1 and all categories now share units

5. Compute a daily weighted score using the FF100 symptom probabilities as weights

6. Use the previous 8 years (2011-2019) to obtain a historical baseline of this scoring
function
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Reducing the effect of news media coverage (1/2)

For a given day and location
— proportion of COVID-19-related news articles: m & [O,l]

— COVID-19 score based on web searches: g € [0,1]

Decompose g such that g = g, + g,
— &, represents ‘infection’

— g. represents ‘concern’

Then y € [0,1] exists such that
o gp =78
-8 =U-7g
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Reducing the effect of news media coverage (2/2)

Linear autoregressive model to forecast g at a time point 7 based on its past values
BRI ) -
arg mlnﬁ (gt — W81 — Wrhf; > — bl) —> predIChOn error €4
W,b,

=1

Linear autoregressive model to forecast g at a time point 7 based on its past values and the
current and past values of m

. y
arg min — (& — Wi8—1 — W& — Vil — Vollly_ — V3lll,_p — 172)

— prediction error €,
e €, < €, :the media signal does not help — y =~ 1
® €, > €,:Y = €,/€; (crude estimation)
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News media coverage corpus

e Data obtained from the Media Cloud database — mediacloud.org

e Number of news media sources per country

US 225
UK 93
Australia 61
Canada /9
France 360
Italy 1/8
Greece /5
South Africa 135

e Obtain the daily ratio of articles that include basic COVID-19-related keywords in their
title or main text
e.g. “covid” or “coronavirus”
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News media coverage corpus

e Data obtained from September 30, 2019 to May 24, 2020

e > (O frequency from ~January, 2020 onwards

o ~2.5million COVID-19-related articles from a total of ~10 million

Average proportion of COVID-19-related news articles in the 8 countries of our analysis

Mean COVID-19 related news articles ratio (8 countries)
| | | | | | | | | | | |

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Days (2020) - Commencing week number
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Unsupervised COVID-192 models in 8 countries based on web search
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Unsupervised COVID-192 models in 8 countries based on web search
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Unsupervised COVID-192 models in 8 countries based on web search
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Unsupervised COVID-19 models in 8 countries based on web search
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Comparison with confirmed COVID-19 cases
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Comparison with deaths of people with COVID-12
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Transfer learning for COVID-192 incidence models

e [ransfer an incidence model — trained on web search activity — for a source country that
has already experienced a COVID-19 epidemic to other target countries that are on earlier

stages of the epidemic

e “Supervised” learning approach
» corroborate our previous unsupervised findings
> will also transfer characteristics/biases of the source country, and especially of its clinical
reporting system
e Source country: ltaly

> first major outbreak in Europe and among the countries in our study
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Transfer learning for COVID-19 incidence models

e Source model: regularised regression (elastic net)
» use daily search query frequencies to estimate confirmed cases
> |taly is our source country

arg miﬁn (Hy — Sw — ﬁ”% + AWl + /12HW||%)
W,

S € RN, pp daily frequencies of N search terms
W el N,,B € IR: regression weights and intercept
A1, 4 € Ry : regularisation parameters

e Many regression models (~80K) — different regularisation amount

» sparsity levels from 5.5% to 91%
3 to 49 selected queries from the 54 we considered for ltaly

» use this to quantify the model’s uncertainty
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Transfer learning for COVID-19 incidence models

e Establish search query pairs between the source and the target countries
» lookup for query pairs within the same symptom category
> pair a source query to the target query with the greatest bivariate correlation, after
identifying an optimal shifting period
e Transfer the regression weights from the source to the target feature space for all ~80K
elastic net models
» Final estimate of COVID-19 incidence is the mean over all models
» .025 and .975 quantiles are used to form 95% confidence intervals

e Perform this daily from Feb. 17 to May 24, 2020, training models on increasing data from
the source country
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Transfer learning for COVID-19 incidence models
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Transfer learning for COVID-192 incidence models — In practice
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Transfer learning vs. unsupervised learning
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Transfer learning vs. unsupervised learning
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Correlation analysis

e Examine the statistical relationship between web search frequencies and confirmed
COVID-19 cases (or deaths)

e Jointly for 4 English-speaking countries (US, UK, Australia, Canada)
> attempt to reduce the bias of clinical endpoints in these different countries

» focus on English-speaking countries for more comprehensive outcomes (without the
need to translate searches)

e Use a broader set of search terms, not just symptom-related
— figshare.com/projects/Tracking_ COVID-192 using_online_search/81548

e Compute the joint bivariate correlation between search frequency and clinical indicators
(cases or deaths) without any shifting and after shifting data so as to maximise it
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Correlation between web searches and COVID-19 cases
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Maximised correlation between web searches and COVID-19 cases
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Regression analysis

e Same 4 English speaking countries (US, UK, Australia, Canada)
e Joint approach again

e Multivariate regression analysis

» Learn many elastic net models for different levels of sparsity (50%-99% to reduce the
chance of overfitting) to jointly estimate cases or deaths based on web search data in
these 4 countries

> Train on data up to day d, test performance on the next day, d+1
» Repeat this daily from the 2nd of March to the 24th of May, 2020
» Use ground truth to find the best solution at each sparsity level

» Compute the impact (average across all days) of each search term in the best solution at
each density level
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Regression analysis — confirmed COVID-19 cases
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@lampos y
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The effect of the COVID-19 outbreak in Italy in web search activity

Did the outbreak in Italy cause an increase in the frequency of the web searches (the ones
used in our analysis) elsewhere?

e Jest this hypothesis from Feb. 17 to April 19, 2020
a 4-week period after the corresponding peak in confirmed cases or deaths in ltaly is added

e Cases or deaths in ltaly Granger-caused < 27.5% of the considered search terms across the
/ other countries in our analysis

o > /0% of the search terms used in our analysis are not affected

e This analysis does not account for the fact that cases and deaths might have been rising in
both locations at the same time

e We also attempt to reduce news media effects in the final signal

e For Italy itself the early-warning provided by the unsupervised signal with reduced media
effects is 14 and 18 days compared to confirmed cases and deaths, respectively
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Symptom-related vs. general interest search terms

Search terms that are less likely to represent infection (“COVID unemployment”) follow the
corresponding trends of search terms about COVID-19-related symptoms (“cough”, “fever”)
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RCGP swabbing scheme for estimating COVID-19 prevalence in England

The Royal College of General Practitioners (RCGP) swabbing scheme included people with no

COVID-19-related symptoms = better capturing community-level spread
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Limitations

e A thorough evaluation of our findings, no matter our efforts to mitigate against confounding
signals, is not possible

> No definitive ground truth exists

e Difficult to use national-level indicators for policy making

> More geographically granular models are needed — there is data to support this now in

some countries
— pair-code.github.io/covid19_symptom_dataset

» Better integration with conventional epidemiological models is required

e Limited applicability to locations with lower rates of Internet access
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Translation and impact

Estimated COVID-19 prevalence score using Google search data for the UK
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Take-aways and conclusions

e Web search activity can be used for infectious disease monitoring
» Google Flu Trends “failed” because of its methodological flaws
> ML and NLP provide the tools to get this right

e We can transfer disease models based on web search data to locations that don’t have
(sufficient) syndromic surveillance data

e Unsupervised models based on web search activity
> demand a careful design

» could be very informative especially when nothing else works

e Searches about common COVID-19 symptoms are not necessarily great COVID-19
prevalence indicators

e Will we continue to use the plethora of data generated during this pandemic to develop
better disease modelling techniques?
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