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Mapping online search to flu estimates
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Why estimate flu rates from online search?

o Complement traditional syndromic surveillance
» timeliness
» broader demographic coverage, larger cohort
» broader geographic coverage
» not affected by closure days
» lower cost

o Applicable to locations that lack an established
healthcare system

Weekly influenza-like illness rates
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Google Flu Trends — discontinued

google Org Flu Trends Language: | gnglish (United States)

Google.org home
Explore flu trends around the world
Dengue Trends . - -
We've found that certain search terms are good indicators of flu activity. Google Flu Trends uses aggregated Google search data
Flu Trends to estimate flu activity. Learn more »
Home

| Select country/regior * |

How does this work?

FAQ

Flu activity
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— popularising an established idea
Ginsberg et al. (2009); Eysenbach (2006); Polgreen et al. (2008)



Google Flu Trends — why did it fail?
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where Q is the average benzonatate — 6%

query frequency symptoms of pneumonia — 6%
upper respiratory infection — 4%



Google Flu Trends — why did it fail?
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e non-ideal query selection, model simplicity
e inappropriate evaluation (less than 1 flu season/)



Multivariate, nonlinear, generative models

e Treat single search queries as distinct variables

e Model nonlinearities
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Multivariate, nonlinear, generative models

e Treat single search queries as distinct variables
e Model nonlinearities

e Model groups of queries that share common temporal
patterns

Gaussian Processes (GPs)
— distribution over functions that can explain the data
— allow some room for model interpretability

— can model uncertainty



Correcting the deficiencies of Google Flu Trends
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e 42% mean absolute error reduction compared to
Google Flu Trends
e .95 Pearson correlation (previously .89) with CDC



ILI rates

0.09

0.08

0.07

Modelling uncertainty

——CDC
——@Gaussian Process

\
\
I R !
\f \ i | b ‘
~ - P ‘f 0 $ 5
e & an
| | | | |
Jan. '09 Jan. "10 Jan. "11 Jan. 12 Jan. 13



Combining GPs with autoregression (AR)
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e 1 week delay in incorporating historical CDC estimates
e 27% mean absolute error reduction over GFT with AR

e 52% mean absolute error reduction over GP without AR
e .99 Pearson correlation with CDC




Query selection based on meaning

o Select search queries based on their semantic
similarity to the topic of flu

e Make this possible by using word embeddings, i.e.
word representations in a common vector space
— learn them using a corpus of 215 million tweets



Query selection based on meaning

|

Analogy: A (is to) — B what X (is to) — ?

Rome — Italy London — [UK, Denmark, Sweden]
go — went do — [did, doing, happened]

Messi — football  Lebron — |[basketball, bball, NBA]
Elvis — Presley Aretha — [Franklin, Ruffin, Vandross]
UK — Brexit Greece — [Grexit, Syriza, Tsipras]

UK — Farage USA — [Trump, Farrage, Putin]




Query selection based on meaning

o Select search queries based on their semantic
similarity to the topic of flu

e Make this possible by using word embeddings, i.e.
word representations in a common vector space
— learn them using a corpus of 215 million tweets

e Combine temporal correlation with semantic
similarity (hybrid similarity) for optimal feature
selection



Query selection based on meaning — Results

ILI rates
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——Correlation-based feature selection
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Examples of selected queries

prof. surname (70%) name surname recipes (21%)
name surname (27%) blood game (12.3%)
heating oil (21%) swine flu vaccine side effects (7.2%)



Query selection based on meaning — Results

——RCGP (England)
——Hybrid feature selection

9 A
fet: \
— A e \
A AT ) X J \
R\ 0w fe ¥\
I y ‘ A A "K.Ax ‘\ A A
| |
2014 2015

e 12.3% performance improvement
e .913 Pearson correlation with RCGP ILI rates



i-sense flu (Flu Detector)
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Weekly influenza-like illness rates
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https://fludetector.cs.ucl.ac.uk/?source=plink&startDate=2018-09-01&endDate=2019-07-01&resolution=week&smoothing=0&id=3
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i-sense flu (Flu Detector)
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o daily flu estimates for England, publicly accessible
o transferred to Public Health England (PHE)

e its estimates have been included in the two most
recent annual flu reports of PHE (gov.uk/

government/statistics/annual-flu-reports)

e oOpen source, github.com/UCL/fludetector-flask

e credit to David Guzman for constantly refining it

Oct 2018 Nov 2018 Dec 2018 Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019 Jun 2019
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https://fludetector.cs.ucl.ac.uk/?source=plink&startDate=2018-09-01&endDate=2019-07-01&resolution=week&smoothing=0&id=3
https://www.gov.uk/government/statistics/annual-flu-reports
https://www.gov.uk/government/statistics/annual-flu-reports
https://www.gov.uk/government/statistics/annual-flu-reports
https://github.com/UCL/fludetector-flask

Forecasting flu rates — Ongoing work

—-—RCGP (England)
——3-weeks ahead forecasts (preliminary model)
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r=.901
led by Simon Moura



Forecasting flu rates (US) — Ongoing work
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7 ———3-weeks ahead forecasts (preliminary model)
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Multi-task learning for flu

Multi-task learning (MTL) vs. single-task learning (STL)
o learns models jointly instead of independently
o for related tasks is performing better than STL solutions

o provides good performance with fewer training samples

Flu models with MTL
e limit performance loss under sporadic training data
e 1IMprove accuracy

» of regional models within a country

» across different countries



Modelling flu across US regions with MTL
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MTL across US and US regions

Performance for US — 1 year of training data

B single-task learning
Bl multi-task learning

Pearson correlation  mean absolute error




MTL across US and US regions

Performance for US regions — 1 year of training data

B single-task learning
Bl multi-task learning

Pearson correlation  mean absolute error




MTL across US and US regions

Performance for US regions — 1 year of training data
50% of the data lost

B single-task learning
Bl multi-task learning

Pearson correlation  mean absolute error




MTL across US and England

Performance for England — 1 year of training data

B single-task learning
Bl multi-task learning

Pearson correlation  mean absolute error




Why estimate flu rates from online search?

e Complement traditional syndromic surveillance
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timeliness

broader demographic coverage, larger cohort
broader geographic coverage

not affected by closure days

lower cost

o Applicable to locations that lack an established

healthcare system
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Transfer learning for flu modelling

Main task

e train a model for a source location where historical
syndromic surveillance data is available

o transfer it to a target location where syndromic surveillance
data is not available or, in our experiments, ignored

Transfer learning steps

1. Learn a regression model for a source location

2. Map search queries from the source to the target domain

3. Transfer the source regression weights to the target
domain



Mapping source to target queries

e Direct translation does not work

o Two similarity components

» Semantic similarity (meaning) using cross-lingual
word embedding representations (6%s)

» Temporal similarity based on their frequency time
series (O.)

o Joint similarity: © = yO, + (1-y)O., y€ [0,1]



Source: US, Target: France

How similar are their tlu rates?
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Source: US, Target: France
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How similar are their tlu rates?
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Conclusions

We have shown that we can

e estimate flu rates from online search

» right modelling approach
» right query selection approach

 utilise multi-task learning to improve models

e transfer models when healthcare data is not available

Future work within i-sense includes
o forecasting flu rates

e translation of our research to public health solutions
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