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Tradi*onal epidemiology
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‣ Tradi6onal ≈ conven&onal, established 

‣ Data streams based on interac6ons with health services 

‣ Methods: sta6s6cs, mechanis6c models, rarely machine learning 

‣ Challenges 

— Biases in the cohorts (sampling bias) 

— Repor6ng latency 

— Non-established health systems 

— A pandemic!



Alterna*ve data streams for epidemiology
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‣ Web search ac6vity, social media 

‣ Different data, different methods? 

‣ Complementary to conven6onal approaches 

— Larger cohorts, broader/different demographic and geographic coverage 

— Reduced latency 

— Lower cost 

— Not par6cularly affected by closure days and pandemics 

— Applicable in loca6ons where health surveillance is less established

📄  Wagner, Lampos, Cox, Pebody. Sci. Rep. (2018), doi:10.1038/s41598-018-32029-6

https://dx.doi.org/10.1038/s41598-018-32029-6


Mapping web search ac6vity to disease rate es6mates

5📄  Eysenbach, AMIA (2006); Polgreen et al. Clin. Infect. Dis. (2008); Ginsberg et al. Nature (2009)

Combining the n 5 45 highest-scoring queries was found to obtain
the best fit. These 45 search queries, although selected automatically,
appeared to be consistently related to ILIs. Other search queries in the
top 100, not included in our model, included topics like ‘high school
basketball’, which tend to coincide with influenza season in the
United States (Table 1).

Using this ILI-related query fraction as the explanatory variable,
we fit a final linear model to weekly ILI percentages between 2003 and
2007 for all nine regions together, thus obtaining a single, region-
independent coefficient. The model was able to obtain a good fit with
CDC-reported ILI percentages, with a mean correlation of 0.90
(min 5 0.80, max 5 0.96, n 5 9 regions; Fig. 2).

The final model was validated on 42 points per region of previously
untested data from 2007 to 2008, which were excluded from all
previous steps. Estimates generated for these 42 points obtained a
mean correlation of 0.97 (min 5 0.92, max 5 0.99, n 5 9 regions)
with the CDC-observed ILI percentages.

Throughout the 2007–08 influenza season we used preliminary
versions of our model to generate ILI estimates, and shared our
results each week with the Epidemiology and Prevention Branch of
Influenza Division at the CDC to evaluate timeliness and accuracy.
Figure 3 illustrates data available at different points throughout the
season. Across the nine regions, we were able to estimate consistently
the current ILI percentage 1–2 weeks ahead of the publication of
reports by the CDC’s US Influenza Sentinel Provider Surveillance
Network.

Because localized influenza surveillance is particularly useful for
public health planning, we sought to validate further our model

against weekly ILI percentages for individual states. The CDC does
not make state-level data publicly available, but we validated our
model against state-reported ILI percentages provided by the state
of Utah, and obtained a correlation of 0.90 across 42 validation points
(Supplementary Fig. 3).

Google web search queries can be used to estimate ILI percentages
accurately in each of the nine public health regions of the United
States. Because search queries can be processed quickly, the resulting
ILI estimates were consistently 1–2 weeks ahead of CDC ILI surveil-
lance reports. The early detection provided by this approach may
become an important line of defence against future influenza epi-
demics in the United States, and perhaps eventually in international
settings.

Up-to-date influenza estimates may enable public health officials
and health professionals to respond better to seasonal epidemics. If a
region experiences an early, sharp increase in ILI physician visits, it
may be possible to focus additional resources on that region to
identify the aetiology of the outbreak, providing extra vaccine capa-
city or raising local media awareness as necessary.

This system is not designed to be a replacement for traditional
surveillance networks or supplant the need for laboratory-based dia-
gnoses and surveillance. Notable increases in ILI-related search activity
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Figure 1 | An evaluation of how many top-scoring queries to include in the
ILI-related query fraction. Maximal performance at estimating out-of-
sample points during cross-validation was obtained by summing the top 45
search queries. A steep drop in model performance occurs after adding query
81, which is ‘oscar nominations’.

Table 1 | Topics found in search queries which were found to be most cor-
related with CDC ILI data

Search query topic Top 45 queries Next 55 queries
n Weighted n Weighted

Influenza complication 11 18.15 5 3.40
Cold/flu remedy 8 5.05 6 5.03
General influenza symptoms 5 2.60 1 0.07
Term for influenza 4 3.74 6 0.30
Specific influenza symptom 4 2.54 6 3.74
Symptoms of an influenza
complication

4 2.21 2 0.92

Antibiotic medication 3 6.23 3 3.17
General influenza remedies 2 0.18 1 0.32
Symptoms of a related disease 2 1.66 2 0.77
Antiviral medication 1 0.39 1 0.74
Related disease 1 6.66 3 3.77
Unrelated to influenza 0 0.00 19 28.37
Total 45 49.40 55 50.60

The top 45 queries were used in our final model; the next 55 queries are presented for
comparison purposes. The number of queries in each topic is indicated, as well as query-
volume-weighted counts, reflecting the relative frequency of queries in each topic.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.
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Data available as of 4 February 2008

Data available as of 3 March 2008

Data available as of 31 March 2008

Data available as of 12 May 2008
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Figure 3 | ILI percentages estimated by our model (black) and provided by
the CDC (red) in the mid-Atlantic region, showing data available at four
points in the 2007-2008 influenza season. During week 5 we detected a
sharply increasing ILI percentage in the mid-Atlantic region; similarly, on 3
March our model indicated that the peak ILI percentage had been reached
during week 8, with sharp declines in weeks 9 and 10. Both results were later
confirmed by CDC ILI data.
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What went wrong with Google Flu Trends?

6📄  Lampos, Miller, Crossan, Stefansen. Sci. Rep. (2015), doi:10.1038/srep12760

Influenza-like illness (ILI) rate es6mates in the US during the 2011/12 flu season were greatly affected 
by web searches that were not related to flu.
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‣ Model: Gaussian Process covariance func6ons on clusters (temporal topics) of search queries 
‣ 42% mean absolute error reduc6on compared to Google Flu Trends

Es6ma6ng flu rates using web search ac6vity (US)

7📄  Lampos, Miller, Crossan, Stefansen. Sci. Rep. (2015), doi:10.1038/srep12760
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‣ Model: Gaussian Process flu rate es6mates in ARMAX — 1 week lag for the CDC rates 
‣ 27% mean absolute error reduc6on compared to using Google Flu Trends es6mates in ARMAX 

* AR reinforces systemic biases (not always desirable)

Es6ma6ng flu rates using web search ac6vity (US)

8📄  Lampos, Miller, Crossan, Stefansen. Sci. Rep. (2015), doi:10.1038/srep12760
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Feature (search query terms) selec6on

9📄  Lampos, Zou, Cox. WWW (2017), doi:10.1145/3038912.3052622
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Feature (search query terms) selec6on

10📄  Lampos, Zou, Cox. WWW (2017), doi:10.1145/3038912.3052622
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‣ Accuracy improved by 12.3% (mean absolute error) 
‣ Bivariate correla6on of .91

https://doi.org/10.1145/3038912.3052622


Mul6-task learning for robust subregional flu models (US)

11📄  Zou, Lampos, Cox. WWW (2018), doi:10.1145/3178876.3186050
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‣ yield stat. sig. benefits when historical training 
data is limited (< 3 years) 

‣ are mildly affected by data loss

https://doi.org/10.1145/3178876.3186050


Transferring flu models based on web search ac6vity

12📄  Zou, Lampos, Cox. WWW (2019), doi:10.1145/3308558.3313477

Transfer learning 

‣ supervised flu model using 
data from the US 

‣ transfer it to target 
countries (no historical flu 
rates, no calibra&on) 

‣ γ controls the balance 
between the temporal and 
seman6c similarity of 
source (US) and target 
searches
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Forecas6ng flu rates using web search ac6vity (England)

13📄  Morris, Hayes, Cox, Lampos. arXiv preprint (2021), arXiv:2105.12433

Estimating the Uncertainty of Neural Network Forecasts for Influenza Prevalence Using Web Search Activity

Figure 1. Comparison of LSTM models for ILI forecasting tasks. LSTM-v is a deterministic model, and LSTM-d, LSTM-m, LSTM-c
estimate data, model, and combined uncertainty, respectively. The number following the model names denotes � (the forecasting horizon).
The corresponding figure with FF models is in the Appendix.

wise identical models. We find that models trained without
search query data are less accurate and less confident, con-
firming that search query data is useful for forecasting.

Standard Regression Accuracy Metrics. Standard met-
rics (MAE, RMSE, SMAPE, and r) do not consider corre-
sponding uncertainty estimates, but are, of course, important.
NNs are superior to the baseline models with the exception
of data uncertainty models -d. For forecasting horizon
� = 7, FF models provide the best forecasts. For � = 14,
the FF-v and LSTM-v are not statistically different, and
-v, -m and -cmodels perform similarly. For � = 21, which
is the most challenging forecasting task in our experiments,
the best-performing models are based on the LSTM archi-
tecture. We see that for � = 7 or 14 days, the LSTM-c
model is not different in a statistically significant way from
the baseline LSTM-v model. However, for � = 21 this
is not the case; according to SMAPE, LSTM-c is the best
performing model in a statistically significant way.

Uncertainty. The combined uncertainty -c models always
perform better than data uncertainty -d and model uncer-
tainty -m models in terms of both NLL and CRPS. Data or
model uncertainty when used in isolation tend to underesti-
mate uncertainty; this is resolved when used together. We

find that the -c-nq models sometimes outperform the -c
models in terms of NLL. This is due to the NLL’s tendency
to heavily penalise forecasts which are over-confident. The
-c-nq models are by far the least confident of the models
(Figures A2 and A3) and as a result, are less likely to have a
bad prediction which strongly affects NLL. Figure 1 shows
how the uncertainty differs between different models. The
-m model underestimates uncertainty but has a reasonably
accurate mean, while the -d model has an inaccurate mean
and less confidence. The -c model has a good mean predic-
tion and a reasonable confidence interval (metrics for this
are shown in Table 1). Figure 1 also shows that as � in-
creases, the uncertainty surrounding the forecasts increases
as expected.

We evaluate how well the uncertainties are calibrated in
the same way as in Kendall & Gal (2017). We generate
confidence intervals for 0 to 3� confidence (0% to 99.7%)
and compute the frequency that the ground truth falls within
this forecast. For example, we expect the ground truth to
be within a 50% confidence interval 50% of the time. We
show this in calibration plots in Figure 2. The diagonal
line y = x represents perfect calibration. When a model
is too confident, it will be below this line, and when it is
too uncertain, it will be above it. In every case the com-
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Figure 1. Comparison of LSTM models for ILI forecasting tasks. LSTM-v is a deterministic model, and LSTM-d, LSTM-m, LSTM-c
estimate data, model, and combined uncertainty, respectively. The number following the model names denotes � (the forecasting horizon).
The corresponding figure with FF models is in the Appendix.

wise identical models. We find that models trained without
search query data are less accurate and less confident, con-
firming that search query data is useful for forecasting.

Standard Regression Accuracy Metrics. Standard met-
rics (MAE, RMSE, SMAPE, and r) do not consider corre-
sponding uncertainty estimates, but are, of course, important.
NNs are superior to the baseline models with the exception
of data uncertainty models -d. For forecasting horizon
� = 7, FF models provide the best forecasts. For � = 14,
the FF-v and LSTM-v are not statistically different, and
-v, -m and -cmodels perform similarly. For � = 21, which
is the most challenging forecasting task in our experiments,
the best-performing models are based on the LSTM archi-
tecture. We see that for � = 7 or 14 days, the LSTM-c
model is not different in a statistically significant way from
the baseline LSTM-v model. However, for � = 21 this
is not the case; according to SMAPE, LSTM-c is the best
performing model in a statistically significant way.

Uncertainty. The combined uncertainty -c models always
perform better than data uncertainty -d and model uncer-
tainty -m models in terms of both NLL and CRPS. Data or
model uncertainty when used in isolation tend to underesti-
mate uncertainty; this is resolved when used together. We

find that the -c-nq models sometimes outperform the -c
models in terms of NLL. This is due to the NLL’s tendency
to heavily penalise forecasts which are over-confident. The
-c-nq models are by far the least confident of the models
(Figures A2 and A3) and as a result, are less likely to have a
bad prediction which strongly affects NLL. Figure 1 shows
how the uncertainty differs between different models. The
-m model underestimates uncertainty but has a reasonably
accurate mean, while the -d model has an inaccurate mean
and less confidence. The -c model has a good mean predic-
tion and a reasonable confidence interval (metrics for this
are shown in Table 1). Figure 1 also shows that as � in-
creases, the uncertainty surrounding the forecasts increases
as expected.

We evaluate how well the uncertainties are calibrated in
the same way as in Kendall & Gal (2017). We generate
confidence intervals for 0 to 3� confidence (0% to 99.7%)
and compute the frequency that the ground truth falls within
this forecast. For example, we expect the ground truth to
be within a 50% confidence interval 50% of the time. We
show this in calibration plots in Figure 2. The diagonal
line y = x represents perfect calibration. When a model
is too confident, it will be below this line, and when it is
too uncertain, it will be above it. In every case the com-
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Figure 1. Comparison of LSTM models for ILI forecasting tasks. LSTM-v is a deterministic model, and LSTM-d, LSTM-m, LSTM-c
estimate data, model, and combined uncertainty, respectively. The number following the model names denotes � (the forecasting horizon).
The corresponding figure with FF models is in the Appendix.

wise identical models. We find that models trained without
search query data are less accurate and less confident, con-
firming that search query data is useful for forecasting.

Standard Regression Accuracy Metrics. Standard met-
rics (MAE, RMSE, SMAPE, and r) do not consider corre-
sponding uncertainty estimates, but are, of course, important.
NNs are superior to the baseline models with the exception
of data uncertainty models -d. For forecasting horizon
� = 7, FF models provide the best forecasts. For � = 14,
the FF-v and LSTM-v are not statistically different, and
-v, -m and -cmodels perform similarly. For � = 21, which
is the most challenging forecasting task in our experiments,
the best-performing models are based on the LSTM archi-
tecture. We see that for � = 7 or 14 days, the LSTM-c
model is not different in a statistically significant way from
the baseline LSTM-v model. However, for � = 21 this
is not the case; according to SMAPE, LSTM-c is the best
performing model in a statistically significant way.

Uncertainty. The combined uncertainty -c models always
perform better than data uncertainty -d and model uncer-
tainty -m models in terms of both NLL and CRPS. Data or
model uncertainty when used in isolation tend to underesti-
mate uncertainty; this is resolved when used together. We

find that the -c-nq models sometimes outperform the -c
models in terms of NLL. This is due to the NLL’s tendency
to heavily penalise forecasts which are over-confident. The
-c-nq models are by far the least confident of the models
(Figures A2 and A3) and as a result, are less likely to have a
bad prediction which strongly affects NLL. Figure 1 shows
how the uncertainty differs between different models. The
-m model underestimates uncertainty but has a reasonably
accurate mean, while the -d model has an inaccurate mean
and less confidence. The -c model has a good mean predic-
tion and a reasonable confidence interval (metrics for this
are shown in Table 1). Figure 1 also shows that as � in-
creases, the uncertainty surrounding the forecasts increases
as expected.

We evaluate how well the uncertainties are calibrated in
the same way as in Kendall & Gal (2017). We generate
confidence intervals for 0 to 3� confidence (0% to 99.7%)
and compute the frequency that the ground truth falls within
this forecast. For example, we expect the ground truth to
be within a 50% confidence interval 50% of the time. We
show this in calibration plots in Figure 2. The diagonal
line y = x represents perfect calibration. When a model
is too confident, it will be below this line, and when it is
too uncertain, it will be above it. In every case the com-

‣ Bayesian Neural Networks can provide forecasts (γ days ahead) with uncertainty without significant accuracy loss 

‣ Combine model (epistemic) and data (aleatoric) uncertain6es 

‣ Web search ac6vity data is key for improving forecas6ng accuracy

https://arxiv.org/abs/2105.12433


Modelling COVID-19 using web search ac6vity

14📄  Lampos et al. npj Digit. Med. (2021), doi:10.1038/s41746-021-00384-w
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Figure 1. Online search scores for COVID-19-related symptoms as identified by the FF100 survey, in addition to queries with
coronavirus-related terms, for 8 countries from September 30, 2019 to May 24, 2020 (all inclusive). Query frequencies are
weighted by symptom occurrence probability (blue line) and have news media effects minimised (black line). These scores are
compared to an average 8-year trend of the weighted model (dashed line) and its corresponding 95% confidence intervals
(shaded area). Application dates for physical distancing or lockdown measures are indicated with dash-dotted vertical lines; for
countries that deployed different regional approaches, the first application of such measures is depicted. All time series are
smoothed using a 7-point moving average, centred around each day.

go below the expected seasonal average. We also note that for Australia and the UK, search scores were already in decline85

after the application of physical distancing measures but before lockdowns. Outcomes based solely on the FF100 symptoms86

(Fig. S2) or without using any weighting scheme (Fig. S3) are available in the Supplementary Information (SI).87

A comparison of the search scores with minimised media effects to the time series of confirmed cases is depicted in88

Fig. 2. If we exclude South Africa, as it displays an outlying behaviour, perhaps due to a limited testing capacity28, 29 or89

demographically-skewed Internet access patterns30, the correlation between these times series is maximised, reaching an average90

value of .826 (.735� .917) when clinical data is brought forward by 16.7 (10.2�23.2) days. This provides an indication of91

how much sooner the proposed unsupervised models could have signalled an early warning about these epidemics at a national92

level. Replacing confirmed cases with deaths caused by COVID-19 (Fig. S4) increases this period to 22.1 (17.4�26.9) days93

with a slightly greater maximised correlation (r = .846; .702� .990).94

Models of confirmed COVID-19 cases are transferred from Italy (source) to all other countries (targets) in our analysis95

using a transfer learning methodology. In contrast to the unsupervised models, here we attempt to leverage information from96

a country that is ahead in terms of epidemic progression31. As a result, the obtained estimates are reflective of the clinical97

reporting systems in the source country, but not as influenced by user concern at the target countries given that they are derived98

3/15

‣ Unsupervised learning 

‣ 8 countries — na6onal signals 

‣ Arempt to reduce news media 
effects 

‣ Scores reduced by 16.4% on 
average during peak moments

https://doi.org/10.1038/s41746-021-00384-w


Modelling COVID-19 using web search ac6vity

15📄  Lampos et al. npj Digit. Med. (2021), doi:10.1038/s41746-021-00384-w
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Figure 2. Comparison between online search scores with minimised news media effects (black line) and confirmed cases
(dashed red line), as well as confirmed cases shifted back (red line) such that their correlation with the online search scores is
maximised. The confirmed cases time series are shifted back by a different number of days for each country: 20 days (US), 24
days (UK), 6 days (Australia), 31 days (Canada), 10 days (France), 14 days (Italy), 12 days (Greece), and 53 days (South
Africa). All time series are smoothed using a 7-point moving average, centred around each day.

Figure 3. Transfer learning models based on online search data for 7 countries using Italy as the source country. The figures
show an estimated trend for confirmed COVID-19 cases compared to the reported one. The trend is derived by standardising
the transferred estimates (raw values are reflective of the demographics and clinical reporting approach of the source country).
The solid line represents the mean estimate from an ensemble of models. The shaded area shows 95% confidence intervals
based on all model estimates. Application dates for physical distancing or lockdown measures are indicated with dash-dotted
vertical lines; for countries that deployed different regional approaches, the first application of such measures is depicted. Time
series are smoothed using a 3-point moving average, centred around each day. We use this minimum amount of smoothing to
remove some of the noise for visualisation purposes and maintain our ability to compare the transferred models to the
corresponding clinical data.

Figure 4. Correlation and regression analysis of search query frequencies against confirmed COVID-19 cases or deaths in
four English speaking countries (US, UK, Australia, and Canada). (a) Top-30 positively and top-10 negatively correlated
search queries with COVID-19 confirmed cases; (b) Top-30 positively and top-10 negatively impactful queries in estimating
COVID-19 confirmed cases; (c) Top-30 positively and top-10 negatively impactful queries in estimating deaths caused by
COVID-19.
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Comparison with confirmed 
COVID-19 cases 

‣ Average early-warning 
16.7 days, CI: 10.2–23.2 days 

‣ Average bivariate correla6on 
r = .83, CI: .74–.92 

Note: South Africa is excluded from this analysis

https://doi.org/10.1038/s41746-021-00384-w
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Supplementary Figure 4. Comparison between online search scores with minimised news media effects (black line) with
deaths caused by COVID-19 (dashed red line), as well as deaths shifted back (red line) such that their correlation with the
online search scores is maximised. The deaths time series are shifted back by a different number of days for each country: 25
days (US), 23 days (UK), 19 days (Australia), 35 days (Canada), 17 days (France), 18 days (Italy), 18 days (Greece), and 52
days (South Africa). All time series are smoothed using a 7-point moving average, centred around each day.
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Comparison with deaths of people 
diagnosed with COVID-19 

‣ Average early-warning 
22.1 days, CI: 17.4–26.9 days 

‣ Average bivariate correla6on 
r = .85, CI: .70–.99  

Note: South Africa is excluded from this analysis

https://doi.org/10.1038/s41746-021-00384-w
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‣ Transfer a model 
trained on data from 
Italy (confirmed cases, 
web search ac&vity) 

‣ Unsupervised learning 
vs. transfer learning 

- 5 days earlier warning 
for the unsupervised 
models 

- curves are similar 
when aligned 
temporally
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Supplementary Figure 6. Comparison between transfer learning and unsupervised (weighted, minimised news effects)
models based on online search data for 7 countries. Italy is the source country for the transfer learning models. Both time series
are standardised to allow comparison. The solid black line represents the mean estimate from an ensemble of transferred
models. The shaded area shows 95% confidence intervals based on all transferred model estimates. The solid red line shows the
estimates from the unsupervised model. Application dates for physical distancing or lockdown measures are indicated with
dash-dotted vertical lines; for countries that deployed different regional approaches, the first application of such measures is
depicted. Time series are smoothed using a 3-point moving average, centred around each day.
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Using web search anomalies to predict COVID-19 outbreaks (England)

18📄  Yom-Tov, Lampos, Inns, Cox, Edelstein. arXiv preprint (2020) — updated manuscript under review, arXiv:2007.11821
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‣ Iden6fy anomalies in web searches about COVID-19-related symptoms in local authori6es in England 
(difference-in-difference methodology) 

‣ Predict local outbreaks with a substan6al early-warning — Caveat: hard to assess accuracy!

https://arxiv.org/abs/2007.11821


What is the impact of a vaccina6on campaign?

19
📄  Lampos, Yom-Tov, Pebody, Cox. Data Min. Knowl. Disc. (2015), doi:10.1007/s10618-015-0427-9 
📄  Wagner, Lampos, Yom-Tov, Pebody, Cox. J. Med. Internet Res. (2017), doi:10.2196/jmir.8184 

Assessing the impact of a health intervention via Internet content 1449
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Fig. 3 Modeled ILI rates inferred via user-generated content (qv , red dots) in comparison with projected
ILI rates (q∗

v , black squares) during the LAIV program and up until the end of the influenza season. The
projection represents an estimation of the ILI rates that would have appeared, had the LAIV program not
taken place. The solid lines (3-point moving average) represent the general trends of the actual data points
(dashed lines) to allow for a better visual comparison. a All vaccinated areas (T ). b London areas (T ).
c Cumbria (T ). d London borough of Newham (T ). e All vaccinated areas (B). f London areas (B) (Color
figure online)

number of applicable controls per case. Generally, we observe that results stemming
from Twitter data are less sensitive (0.10–13.7 %) to changes in control regions as
compared to Bing data (10.3–40.3 %). The most consistent estimate (from Table 3)
is the one indicating a −32.77 % impact on the vaccinated areas as a whole based on
Twitter data, with ∆θv equal to just 0.1 %.

5 Related work

User-generated web content has been used to model infectious diseases, such as
influenza-like illness (Milinovich et al. 2014). Coined as “infodemiology” (Eysenbach
2006), this research paradigm has been first applied on queries to the Yahoo engine
(Polgreen et al. 2008). It became broadly known, after the launch of the Google Flu
Trends (GFT) platform (Ginsberg et al. 2009). Both modeling attempts used simple
variations of linear regression between the frequency of specific keywords (e.g., ‘flu’)
or complete search queries (e.g., ‘how to reduce fever’) and ILI rates reported by
syndromic surveillance. In the latter case, the feature selection process, i.e., deciding
which queries to include in the predictive model, was based on a correlation analy-
sis between query frequency and published ILI rates (Ginsberg et al. 2009). However,
GFT has been criticized as in several occasions its publicly available outputs exhibited

123

vaccinated areas 
in London (Bing)

vaccinated areas in 
London (Twi:er)

‣ Flu vaccina6on campaign by 
NHS/PHE (schools) 

‣ Launched in a few areas — 
hard to assess the impact 

‣ What would the flu rates be 
had the vaccina6on not taken 
place? 

‣ TwiYer: 32.8% reduc6on 

‣ Bing: 21.1% reduc6on

https://doi.org/10.1007/s10618-015-0427-9
https://doi.org/10.2196/jmir.8184


Minimum Unit Pricing (MUP) of alcohol in Scotland

20📄  Leon et al. AddicEon (2021), doi:10.1111/add.15388

Figure 1 Variation in daily likelihood over 2018 by topic for Scotland (blue line) and England (red line) with 95% confidence bounds. Date of min-
imum unit pricing (MUP) implementation (1 May 2018) shown by vertical black dashed line. Likelihood of queries for a topic is the frequency of
searches for that topic on a day divided by the total number of queries on any subject. The plotted values are 14-day moving averages centred on
each day. [Colour figure can be viewed at wileyonlinelibrary.com]
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‣ Alcohol MUP is a public health interven6on aimed at reducing alcohol-related ill health in Scotland 

‣ Search trends reflect on the policy introduc6on (May 1, 2018) 

‣ Arempts to buy cheaper alcohol, circumvent the policy, no observable impact (at the &me of the analysis)

Search trends (Bing search engine) for alcohol-related topics in England (red) and Scotland (blue) during 2018. 

https://doi.org/10.1111/add.15388


Es6ma6on of secondary arack rates (SAR) from social media ac6vity

21

📄  Yom-Tov, Cox, Lampos, Hayward. Influenza Other Respir. Viruses (2015), doi:10.1111/irv.12321 
      and an ongoing project led by Tomasz Czernuszenko

‣ SAR: probability of infec&on following contact with an infec&ous person 

‣ Original model applied to es6mate familial (household) SAR (fSAR) for influenza in the UK 

‣ Ongoing work to es6mate fSAR for COVID-19

Bill Lampos @lampos﹒Mar 30 
My father has had a #COVID19 PCR test a couple days ago 
and it came back posi6ve. Oh no!

Bill Lampos @lampos﹒Apr 8 
While my father seems to be OK now, I am star6ng to feel 
really unwell and my lunch did not taste right. #COVID19

https://doi.org/10.1111/irv.12321


Gynaecological cancer risk predic6on through web search ac6vity

22This is an ongoing project that currently involves S. Saso, J. Barcro^, D. Guzman, E. Yom-Tov, I. J. Cox, and myself

‣ Late diagnosis arributed to vague clinical presenta6on 

‣ 10-year survival rate for ovarian cancer 
Stage I: 75%, Stage III: 21%, Stage IV: 5%   

‣ Web search ac6vity 

— early-warning to visit a specialist 

— inves6gate symptom parerns in larger cohorts 

‣ Collabora6on with Imperial College London NHS Trust 

‣ Ethics approval, recrui6ng pa6ents since late 2020 

‣ Data: medical history, web search history



Real-world impact — Flu rate es6mates (England)

23

gov.uk/government/sta6s6cs/na6onal-flu-and-
covid-19-surveillance-reports

fludetector.cs.ucl.ac.uk

https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports
https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports
https://fludetector.cs.ucl.ac.uk


Real-world impact — COVID-19 prevalence es6mates (England)
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covid.cs.ucl.ac.uk

gov.uk/government/sta6s6cs/na6onal-flu-and-
covid-19-surveillance-reports-2021-to-2022-season

https://covid.cs.ucl.ac.uk
https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports-2021-to-2022-season
https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports-2021-to-2022-season


The future
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✓  Integrate 

✓  Evolve  

✓  Expand 

✓  Educate 

✓  Regulate
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