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Structure of the presentation
1. Introductory remarks 

2. Collective disease surveillance from search 
query data  
— Google Flu Trends and inference inaccuracies  
— Steps towards improvement 

3. Mining socio-economic demographics from 
social media users 
— Occupational class  
— Income  
— Socioeconomic status 

4. Concluding remarks
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Context and Motivation

How can we use online  
user-generated content (UGC) 

to our benefit? 



User-generated content for health. WHY?

+ Online content can potentially access a larger and 
more representative part of the population 
Note: Health surveillance systems are based on the 
subset of people who actively seek medical attention 

+ More timely information (almost instant) 

+ Geographical regions with less established 
health monitoring systems could benefit 

+ Small cost when data access and modelling 
expertise are in place



Google Flu Trends — The idea

Can we turn online search query statistics  
to estimates about the rate of influenza-like  
illness (ILI) in the real-world population?



Google Flu Trends — Supervised learning

Flu rates from a health 
agency representing 
doctor consultations
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Bing

logit(y) = β0 + β1 ✕ logit(q) + ε 

(Ginsberg et al., 2009)



Google Flu Trends — Supervised learning

(Ginsberg et al., 2009)

Flu rates from a health 
agency representing 
doctor consultations
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ILI rates (PHE)

Bing

logit(y) = β0 + β1 ✕ logit(q) + ε 

q is the aggregate frequency  
of a selected subset of the N  

candidate search queries 
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Algorithm Dynamics
All empirical research stands on a founda-
tion of measurement. Is the instrumentation 
actually capturing the theoretical construct of 
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum, 
it is quite likely that GFT was an unstable 
refl ection of the prevalence of the fl u because 
of algorithm dynamics affecting Google’s 
search algorithm. Algorithm dynamics are 
the changes made by engineers to improve 
the commercial service and by consum-
ers in using that service. Several changes in 
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most 
common explanation for GFT’s error is a 
media-stoked panic last fl u season ( 1,  15). 
Although this may have been a factor, it can-
not explain why GFT has been missing high 
by wide margins for more than 2 years. The 
2009 version of GFT has weathered other 
media panics related to the fl u, including the 
2005–2006 influenza A/H5N1 (“bird flu”) 
outbreak and the 2009 A/H1N1 (“swine fl u”) 
pandemic. A more likely culprit is changes 
made by Google’s search algorithm itself.

The Google search algorithm is not a 
static entity—the company is constantly 
testing and improving search. For example, 
the offi cial Google search blog reported 86 
changes in June and July 2012 alone (SM). 
Search patterns are the result of thousands of 
decisions made by the company’s program-
mers in various subunits and by millions of 
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never 
documented the 45 search terms used, and 
the examples that have been released appear 
misleading ( 14) (SM). Google does provide 
a service, Google Correlate, which allows 
the user to identify search data that correlate 
with a given time series; however, it is lim-
ited to national level data, whereas GFT was 
developed using correlations at the regional 
level ( 13). The service also fails to return any 
of the sample search terms reported in GFT-
related publications ( 13,  14).

Nonetheless, using Google Correlate to 
compare correlated search terms for the GFT 
time series to those returned by the CDC’s 
data revealed some interesting differences. In 
particular, searches for treatments for the fl u 
and searches for information on differentiat-
ing the cold from the fl u track closely with 
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data 
(and thus user utilization) has been modi-

fi ed by the service provider in accordance 
with their business model. Google reported 
in June 2011 that it had modifi ed its search 
results to provide suggested additional search 
terms and reported again in February 2012 
that it was now returning potential diagnoses 
for searches including physical symptoms 
like “fever” and “cough” ( 21,  22). The for-
mer recommends searching for treatments 
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase 
in some searches to distinguish the fl u from 
the common cold. We document several other 
changes that may have affected GFT (SM).

In improving its service to customers, 
Google is also changing the data-generating 
process. Modifications to the search algo-
rithm are presumably implemented so as to 
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more 
advertising revenue. Recommended searches, 
usually based on what others have searched, 
will increase the relative magnitude of certain 
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely 
affect GFT’s estimates. Oddly, GFT bakes in 
an assumption that relative search volume for 
certain terms is statically related to external 

events, but search behavior is not just exog-
enously determined, it is also endogenously 
cultivated by the service provider.

Blue team issues are not limited to 
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and 
whether studies conducted even a year ago 
on data collected from these platforms can 
be replicated in later or earlier periods is an 
open question.

Although it does not appear to be an issue 
in GFT, scholars should also be aware of the 
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur 
when research subjects (in this case Web 
searchers) attempt to manipulate the data-
generating process to meet their own goals, 
such as economic or political gain. Twitter 
polling is a clear example of these tactics. 
Campaigns and companies, aware that news 
media are monitoring Twitter, have used 
numerous tactics to make sure their candidate 
or product is trending ( 23,  24).

Similar use has been made of Twitter 
and Facebook to spread rumors about stock 
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of 
information, the more tempting it will be to 
manipulate those signals.
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GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the 
actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly 
high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 
52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates, 
lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC 
estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone. 
Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 
for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.

The estimates of the online Google Flu Trends tool 
were approx. two times larger than the ones from 

the CDC in 2012/13

(Lazer et al., 2014)

Google Flu Trends — Failure



- “Big Data” criticism 

- The statistical learning model was not 
good enough 

- Feature selection was not good enough 
bringing in spurious search queries 

- Media hype about flu significantly affects 
inference accuracy 

- The ground truth is not perfect; it is rather a 
“silver” standard

Google Flu Trends — Hypotheses for failure



X “Big Data” criticism 

✓ The statistical learning model was not 
good enough 

✓ Feature selection was not good enough 
bringing in spurious search queries 

? Media hype about flu significantly affects 
inference accuracy 

✓? The ground truth is not perfect; it is rather a 
“silver” standard

Google Flu Trends — Hypotheses for failure



Advances in nowcasting influenza-like 
illness rates using online search logs

Lampos, Miller, Crossan & Stefansen 
(Nature Scientific Reports, 2015)

http://www.nature.com/articles/srep12760


Data
Google search logs 
- weekly search counts of 49,708 search queries 
- corresponding total volume of weekly searches 
- user search sessions geolocated in the US 
- anonymised & aggregate data 
- Jan. 2004 to Dec. 2013 (521 weeks, ~decade) 

ILI rates from CDC

Number of clusters r MAE⇥102 MAPE (%)

1 .91 .273 12.3
2 .92 .266 12.2
4 .93 .243 11.4
6 .92 .246 11.6
8 .94 .236 11.7
10 .95 .221 10.8
12 .94 .234 11.2

Table S3. Cumulative performance (2008-2013) of GP model with various numbers of clusters.

Covariance function r MAE⇥102 MAPE (%)

SE .95 .221 10.8
Matérn .95 .228 11

Table S4. Performance comparison of the optimal GP model (10 clusters) when a different covariance function (Matérn) is
used.

Figure S1. CDC ILI rates for the US covering 2004 to 2013, i.e., the time span of the data used in our experimental process.
Flu periods are distinguished by color.

Figure S2. Comparison of query-only predictions for all investigated models during the flu season 2008-09 (omitted from
main text for space reasons).

5/10
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Nonlinearities in the data (1)
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Nonlinearities in the data (2)
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Gaussian Processes for nonlinear modelling

Why do we use Gaussian Processes? 
+ Kernelised, models nonlinearities 
+ Interpretability (AutoRelevance Determination) 
+ Performance

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

C
w

=

P
x2c NPMI(w, x)

|c|� 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs xxx 2 Rd:

f(x

x

x) ⇠ GP(m(x

x

x), k(x

x

x,x

x

x

0
)) , (3)

where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx0), this is:
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(xxx) , P(y = 1|xxx) = �(f(x

x

x))

in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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Say and we want to learn

Formally: Sets of random variables any finite number of 
which have a multivariate Gaussian distribution

mean function 
drawn on inputs

covariance function (kernel) 
drawn on pairs of inputs

(Rasmussen & Williams, 2006)



Common covariance functions (kernels)

2 Expressing Structure with Kernels

functions are likely under the GP prior, which in turn determines the generalization
properties of the model.

1.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 1.1.

Kernel name: Squared-exp (SE) Periodic (Per) Linear (Lin)
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Figure 1.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a di�erent set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly di�erent assumptions
about the smoothness of the function being modeled.

Kernel parameters Each kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of
being parameters which specify a function directly. An example would be the lengthscale

(Duvenaud, 2014)



Combining kernels in a GP

4 Expressing Structure with Kernels

Lin ◊ Lin SE ◊ Per Lin ◊ SE Lin ◊ Per

0 0

0
0

x (with x

Õ = 1) x ≠ x

Õ
x (with x

Õ = 1) x (with x

Õ = 1)
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quadratic functions locally periodic increasing variation growing amplitude

Figure 1.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 1.1.

1.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 1.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple
parametric form. Here, we discuss a few examples:

• Polynomial Regression. By multiplying together T linear kernels, we obtain a
prior on polynomials of degree T . The first column of figure 1.2 shows a quadratic
kernel.

• Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per◊SE corresponds to locally
periodic structure, as shown in the second column of figure 1.2.

• Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter c. The third and fourth columns
of figure 1.2 show two examples.

it is possible to add or multiply kernels 
(among other operations)

(Duvenaud, 2014)



GP kernel on query clusters
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where λ1, λ2 are the regularization parameters (see SI, Parameter learning in the Elastic Net). Compared 
to Lasso, Elastic Net often selects a broader set of relevant queries24.

Exploring nonlinearities with Gaussian Processes. The majority of methods for modeling infec-
tious diseases via user-generated content are based on linear methods10,13,14 ignoring the presence of 
possible nonlinearities in the data (see Supplementary Fig. S4). Recent findings in natural language pro-
cessing applications suggest that nonlinear frameworks, such as the Gaussian Processes (GPs), can 
improve predictive performance, especially in cases where the feature space is moderately-sized28,29. GPs 
are sets of random variables, any finite number of which have a multivariate Gaussian distribution30. In 
GP regression, for the inputs x, ′ ∈ �x Q (both expressing rows of the query matrix X) we want to learn 
a function →� �f : Q  that is drawn from a GP prior, f (x) ∼ GP (µ(x), k (x, x′ )), where µ(x) and k(x, 
x′ ) denote the mean and covariance (or kernel) functions respectively. Our models assume that µ(x) =  0 
and use the Squared Exponential (SE) covariance function, defined by
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where A is known as the length-scale parameter and σ2 is a scaling constant that represents the overall 
variance. Note that A is inversely proportional to the relevancy of the feature space. Different kernels have 
been applied, such as the the Matérn31, but did not yield any performance improvements (see 
Supplementary Table S4). In the GP framework, predictions are conducted through 

( ) ( )∫, = , ( )⁎ ⁎ ⁎ ⁎X Xy y f fx xP P Pf
, where y* is the target variable, X the set observations used for 

training, and x* the current observation. Parameter learning is performed by minimizing the negative 
log-marginal likelihood of ( )XyPr , where y denotes the ILI rates used for training.

The proposed GP model is applied on the queries previously selected by the Elastic Net. However, 
instead of modeling each query separately or all queries as a whole, we first cluster queries into groups 
based on a similarity metric and then apply a composite GP kernel on clusters of queries. Given a par-
tition of the search queries = , …,x c c{ }C1 , where ci denotes the subset of queries clustered in group i, 
we define the GP covariance function to be

∑ σ δ′ ′( , ) =
⎛

⎝
⎜⎜⎜ ( , ′)

⎞

⎠
⎟⎟⎟⎟

+ ⋅ ( , ),
( )=

k kx x c c x x
4i

C

i i
1

SE n
2

where C denotes the number of clusters, kSE has a different set of hyperparameters (σ, A) per group, and 
the second term of the equation models noise (δ being a Kronecker delta function). We extract a clus-
tered representation of queries by applying the k-means+ +  algorithm32,33 (see SI, Gaussian Process train-
ing details). The distance metric of k-means uses the cosine similarity between time series of queries to 
account for the different magnitudes of the query frequencies in our data34. It is defined by 
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 denotes a column of the input matrix X.

By focusing on sets of queries, the proposed method can protect an inferred model from radical 
changes in the frequency of single queries that are not representative of an entire cluster. For example, 
media hype about a disease may trigger queries expressing a general concern rather than a self-infection. 
These queries are expected to utilize a small subset of specific key-phrases, but not the entirety of a 
cluster related to flu infection. In addition, assuming that query clusters may convey different thematic 
‘concepts’, related to flu, other health topics or even expressing seasonal patterns, our learning algorithm 
will be able to model the contribution of each of these concepts to the final prediction. From a statistical 
point of view, GP regression with an additive covariance function can be viewed as learning a sum of 
lower-dimensional functions, = + … +f f f C1 , one for each cluster. As these functions have signifi-
cantly smaller input space ( < Qci , for ∈ , …,i C{1 }), the learning task becomes much easier, requiring 
fewer samples and giving us more statistical traction. However, this imposes the assumption that the 
relationship between queries in separate clusters provides no information about ILI, which we believe is 
reasonable.

Denoting all ILI observations as = ( , …, )y yy T1 , our GP regression objective is defined by the min-
imization of the following negative log-marginal likelihood function

µ µ(( − ) ( − ) + ( )),
( )σ σ σ,…, , ,…, ,

−

A A

Тy K y Kargmin log
5

1

C C1 1 n

where K is the matrix of covariance function evaluations at all pairs of inputs, (K)i,j =  k(xi, xj), and µ is 
similarly defined as µ µ µ= ( ( ), …, ( ))x xT1 . Given features from a new week, x*, predictions are con-
ducted by computing the mean value of the posterior predictive distribution, E[y*|y, X, x*], and predictive 
uncertainty is estimated by the posterior predictive variance, V[y*|y, X, x*]30.

+ protects inferences from radical changes in the 
frequency of isolated queries 

+models the contribution of various themes (clusters) 
to the final prediction (bi-product: interpretability) 

+ learns a sum of lower-dimensional functions: smaller 
input space, easier learning task, fewer samples 
required, more statistical traction obtained 

- [trade-off] assumption that relationships between 
queries in separate clusters provide no information 
about ILI
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and actual ILI rates (Supplementary Fig. S2 shows the results for 2008–09). Further details, such as the 
number of selected or nonzero weighted queries per case and model are shown in Supplementary Table 
S2. Evidently, the GP model outperforms both GFT and Elastic Net models. Using an aggregation of all 
inferences and the MAPE loss function, we see that Elastic Net yields an absolute performance improve-
ment of 8.5% (relative improvement of 41.7%) in comparison to GFT. The GP model in comparison to 
Elastic Net improves predictions further by 1.1% (relative improvement of 9.2%). We also observe that 
both Elastic Net and GP models cannot capture the ILI rate during the peak of the flu season for 2009–
10, whereas the GFT model over-predicts it. This could be a consequence of the the fact that 2009–10 
was a unique flu period, as it is the only set of points expressing a pandemic in our data (H1N1 swine 
flu pandemic).

By measuring the influence of individual queries or clusters in each nowcast, we conduct a qualitative 
evaluation of the models, aiming to interpret some prediction errors. Our influence metric computes the 
contribution of a query or a cluster of queries by comparing a normal prediction outcome with an output 
had this query or cluster been absent from the input data (see SI, Estimation of query and cluster influ-
ence in nowcasts). The GFT model is very unstable across the different flu seasons, sometimes exhibiting 
the smallest error (season 2009–10), and other times severely mispredicting ILI rates (seasons 2008–09, 
2010–11 and 2011–12). Through an examination of a 21-week period (04/12/2011 to 28/04/2012), where 
major over-predictions occur (see Fig.  1C), and the estimation of the percentage of influence for each 
query in the weekly predictions, we deduced that queries unrelated to influenza were responsible for 
major portions of the final prediction. The query ‘rsv’ (where RSV stands for Respiratory Syncytial Virus) 
accounts on average for 24.5% of the signal, overtaking the only clearly flu-related query with a signif-
icant representation (‘flu symptoms’ expressing 17.5% of the signal); the top five most influential que-
ries also include ‘benzonatate’ (6.2%), ‘symptoms of pneumonia’ (6%) and ‘upper respiratory infection’ 
(3.9%), all of which are either not related to or may have an ambiguous contribution to ILI. Hence, the 
predictions were primarily influenced by content related to other types of diseases or generic concern, 
something that resulted in an over-prediction of ILI rates. For the same 21-week period, we performed 
a similar analysis on the features from the significantly better performing Elastic Net model. Firstly, the 
influence of each query is less concentrated, something expected given the increased number of nonzero 
weighted queries forming up the model (316 queries in Elastic Net vs. 66 in GFT). The features with 
the largest contribution were ‘ear thermometer’ (3.1%), ‘musinex’ (2.4%)—a misspelling of the ‘mucinex’ 
medicine, ‘how to break a fever’ (2.2%), ‘flu like symptoms’ (2.1%) and ‘fever reducer’ (2%), all of which 
may have direct or indirect connections to ILI. Note that none of the top five GFT features received a 
nonzero weight by Elastic Net, hinting that the latter model provided a probably better feature selection 
in this specific case.

Figure 1. Graphical comparison between ILI nowcasts based on query-only models and the ILI rates 
published by CDC. (A–D): Flu seasons 2009–10, 2010–11, 2011–12 and 2012–13 respectively.
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10, whereas the GFT model over-predicts it. This could be a consequence of the the fact that 2009–10 
was a unique flu period, as it is the only set of points expressing a pandemic in our data (H1N1 swine 
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By measuring the influence of individual queries or clusters in each nowcast, we conduct a qualitative 
evaluation of the models, aiming to interpret some prediction errors. Our influence metric computes the 
contribution of a query or a cluster of queries by comparing a normal prediction outcome with an output 
had this query or cluster been absent from the input data (see SI, Estimation of query and cluster influ-
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2010–11 and 2011–12). Through an examination of a 21-week period (04/12/2011 to 28/04/2012), where 
major over-predictions occur (see Fig.  1C), and the estimation of the percentage of influence for each 
query in the weekly predictions, we deduced that queries unrelated to influenza were responsible for 
major portions of the final prediction. The query ‘rsv’ (where RSV stands for Respiratory Syncytial Virus) 
accounts on average for 24.5% of the signal, overtaking the only clearly flu-related query with a signif-
icant representation (‘flu symptoms’ expressing 17.5% of the signal); the top five most influential que-
ries also include ‘benzonatate’ (6.2%), ‘symptoms of pneumonia’ (6%) and ‘upper respiratory infection’ 
(3.9%), all of which are either not related to or may have an ambiguous contribution to ILI. Hence, the 
predictions were primarily influenced by content related to other types of diseases or generic concern, 
something that resulted in an over-prediction of ILI rates. For the same 21-week period, we performed 
a similar analysis on the features from the significantly better performing Elastic Net model. Firstly, the 
influence of each query is less concentrated, something expected given the increased number of nonzero 
weighted queries forming up the model (316 queries in Elastic Net vs. 66 in GFT). The features with 
the largest contribution were ‘ear thermometer’ (3.1%), ‘musinex’ (2.4%)—a misspelling of the ‘mucinex’ 
medicine, ‘how to break a fever’ (2.2%), ‘flu like symptoms’ (2.1%) and ‘fever reducer’ (2%), all of which 
may have direct or indirect connections to ILI. Note that none of the top five GFT features received a 
nonzero weight by Elastic Net, hinting that the latter model provided a probably better feature selection 
in this specific case.

Figure 1. Graphical comparison between ILI nowcasts based on query-only models and the ILI rates 
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From 4 Dec. 2011 to 28 Apr. 2012…
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I am skipping…

(1) How, and, hence, why the GP-clustering works 

(2) The obvious auto-regressive extensions 

(3) How we incorporated statistical NLP to further 
improve models (submitted paper)



Inferring user-level information  
from user-generated content

Preotiuc-Pietro, Lampos & Aletras (ACL 2015) 
Preotiuc-Pietro, Volkova, Lampos, Bachrach & Aletras 
(PLOS ONE, 2015) 
Lampos, Aletras, Geyti, Zou & Cox (ECIR 2016)

occupational class

income

socio-economic status (SES)

https://aclweb.org/anthology/P/P15/P15-1169.pdf
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138717
http://www.lampos.net/sites/default/files/papers/socioeconomic_status_twitter.pdf


About Twitter



About Twitter

> 140 characters per published status (tweet) 
> users can follow and be followed 
> embedded usage of topics (using #hashtags) 
> user interaction (re-tweets, @mentions, likes) 
> real-time nature 
> biased demographics (13-15% of UK’s 

population, age bias etc.) 
> information is noisy and not always accurate



Linguistic expression and demographics

“Socioeconomic variables are influencing language use.”

+ Validate this hypothesis on a broader, 
larger data set using social media 

+ Applications 
> research, as in computational social 

science, health, and psychology 
> commercial

(Bernstein, 1960; Labov, 1972/2006)



Standard Occupational Classification (SOC)
cation, outperforming competitive methods. The
best results are obtained using the Bayesian non-
parametric framework of Gaussian Processes (Ras-
mussen and Williams, 2006), which also accom-
modates feature interpretation via the Automatic
Relevance Determination. This allows us to get in-
sight into differences in language use across job
classes and, finally, assess our original hypothesis
about the thematic divergence across them.

2 Standard Occupational Classification

To enable the user occupation study, we adopt a
standardised job classification taxonomy for map-
ping Twitter users to occupations. The Standard Oc-
cupational Classification (SOC)1 is a UK govern-
ment system developed by the Office of National
Statistics for classifying occupations. Jobs are cate-
gorised hierarchically based on skill requirements
and content. The SOC scheme includes nine major
groups coded with a digit from 1 to 9. Each ma-
jor group is divided into sub-major groups coded
with 2 digits, where the first digit indicates the ma-
jor group. Each sub-major group is further divided
into minor groups coded with 3 digits and finally,
minor groups are divided into unit groups, coded
with 4 digits. The unit groups are the leaves of the
hierarchy and represent specific jobs related to the
group.

Table 1 shows a part of the SOC hierarchy. In to-
tal, there are 9 major groups, 25 sub-major groups,
90 minor groups and 369 unit groups. Although
other hierarchies exist, we use the SOC because
it has been published recently (in 2010), includes
newly introduced jobs, has a balanced hierarchy
and offers a wide variety of job titles that were
crucial in our data set creation.

3 Data

To the best of our knowledge there are no pub-
licly available data sets suitable for the task we
aim to investigate. Thus, we have created a new
one consisting of Twitter users mapped to their oc-
cupation, together with their profile information
and historical tweets. We use the account’s profile
information to capture users with self-disclosed
occupations. The potential self-selection bias is ac-
knowledged, but filtering content via self disclosure

1
http://www.ons.gov.uk/ons/

guide-method/classifications/

current-standard-classifications/

soc2010/index.html; accessed on 24/02/2015.

Major Group 1 (C1): Managers, Directors and Senior Officials
Sub-major Group 11: Corporate Managers and Directors

Minor Group 111: Chief Executives and Senior Officials
Unit Group 1115: Chief Executives and Senior Officials
•Job: chief executive, bank manager
Unit Group 1116: Elected Officers and Representatives

Minor Group 112: Production Managers and Directors
Minor Group 113: Functional Managers and Directors
Minor Group 115: Financial Institution Managers and Directors
Minor Group 116: Managers and Directors in Transport and Logistics
Minor Group 117: Senior Officers in Protective Services
Minor Group 118: Health and Social Services Managers and Directors
Minor Group 119: Managers and Directors in Retail and Wholesale

Sub-major Group 12: Other Managers and Proprietors
Major Group (C2): Professional Occupations

•Job: mechanical engineer, pediatrist
Major Group (C3): Associate Professional and Technical Occupations

•Job: system administrator, dispensing optician
Major Group (C4): Administrative and Secretarial Occupations

•Job: legal clerk, company secretary
Major Group (C5): Skilled Trades Occupations

•Job: electrical fitter, tailor
Major Group (C6): Caring, Leisure and Other Service Occupations

•Job: nursery assistant, hairdresser
Major Group (C7): Sales and Customer Service Occupations

•Job: sales assistant, telephonist
Major Group (C8): Process, Plant and Machine Operatives

•Job: factory worker, van driver
Major Group (C9): Elementary Occupations

•Job: shelf stacker, bartender

Table 1: Subset of the SOC classification hierarchy.

is widespread when extracting large-scale data for
user attribute inference (Pennacchiotti and Popescu,
2011; Coppersmith et al., 2014).

Similarly to Hecht et al. (2011), we first assess
the proportion of Twitter accounts with a clear men-
tion to their occupation by annotating the user de-
scription field of a random set of 500 users. There
were chosen from the random 1% sample, having at
least 200 tweets in their history and with a majority
of English tweets. There, we can identify the fol-
lowing categories: no description (12.2%), random
information (22%), user information but not occu-
pation related (45.8%), and job related information
(20%).

To create our data set, we thus use the user de-
scription field to search for self-disclosed job titles
provided by the 4-digit SOC unit groups, since
they contain specific job titles. We queried Twit-
ter’s Search API to retrieve for each job title a max-
imum of 200 accounts which best matched occupa-
tion keywords. Then, we aggregated the accounts
into the 3-digit (minor) categories. To remove po-
tential ambiguity in the retrieved set, we manually
inspected accounts in each minor category and fil-
tered out those that belong to companies, contain
no description or the description provided does not
indicate that the user has a job corresponding to
the minor category. In total, around 50% of the
accounts were removed by manual inspection per-

1755

9 major groups 

25 sub-major groups 

90 minor groups 

369 unit groups

provided by the  
Office for National 

Statistics (UK)



Standard Occupational Classification (SOC)

C1 — Managers, Directors & Senior Officials 
       (chief executive, bank manager) 

C2 — Professional Occupations (postdoc, pediatrist) 
C3 — Associate Professional & Technical 

       (system administrator, dispensing optician) 
C4 — Administrative & Secretarial (legal clerk, secretary) 
C5 — Skilled Trades (electrical fitter, tailor) 
C6 — Caring, Leisure, Other Service 

       (nursery assistant, hairdresser) 
C7 — Sales & Customer Service (sales assistant, telephonist) 
C8 — Process, Plant and Machine Operatives 

       (factory worker, van driver) 
C9 — Elementary (shelf stacker, bartender)

The 9 major occupational classes (C1-9)



Forming a Twitter user data set

+ 5,191 Twitter users mapped to their occupations, 
then mapped to one of the 9 SOC categories 

+ 10 million tweets 
+ Download the data set

% of users per SOC category
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http://www.lampos.net/sites/default/files/data/jobs.tar.gz


Twitter user attributes (18 in total)

number of 
— followers 
— friends 
— followers/friends (ratio) 
— times listed 
— tweets 
— favourites (likes) 
— unique @-mentions 
— tweets/day (avg.) 
— retweets/tweet (avg.)

proportion of  
— retweets done 
— non duplicate tweets 
— retweeted tweets 
— hashtags 
— tweets with hashtags 
— tweets with @-mentions 
— @-replies 
— tweets with links 
— tweets in English

Similarly to our paper  
for user impact estimation (Lampos et al., 2014)



Twitter user discussion topics (I)

Topics — Word clusters (#: 30, 50, 100, 200) 

+ SVD on the graph laplacian of the word by word 
similarity matrix using normalised PMI, i.e. a 
form of spectral clustering 

+ Word2vec (skip-gram with negative sampling) to 
learn word embeddings; pairwise cosine 
similarity on the embeddings to derive a word by 
word similarity matrix; then spectral clustering on 
the similarity matrix

(Bouma, 2009; von Luxburg, 2007)

(Mikolov et al., 2013)



Twitter user discussion topics (II)
Topic Most central words; Most frequent words

Arts archival, stencil, canvas, minimalist; art, design, print

Health chemotherapy, diagnosis, disease; risk, cancer, mental, stress

Beauty Care exfoliating, cleanser, hydrating; beauty, natural, dry, skin

Higher 
Education

undergraduate, doctoral, academic, students, curriculum; 
students, research, board, student, college, education, library

Football bardsley, etherington, gallas; van, foster, cole, winger

Corporate consortium, institutional, firm’s; patent, industry, reports

Elongated 
Words

yaaayy, wooooo, woooo, yayyyyy, yaaaaay, yayayaya, yayy; 
wait, till, til, yay, ahhh, hoo, woo, woot, whoop, woohoo

Politics religious, colonialism, christianity, judaism, persecution, 
fascism, marxism; human, culture, justice, religion, democracy



Gaussian Process classifier

4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

C
w

=

P
x2c

NPMI(w, x)

|c|� 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3
http://radimrehurek.com/gensim/

models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd ! R drawn from a GP prior given the
inputs x

x

x 2 Rd:
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x), k(x

x

x,x

x

x

0
)) , (3)

where m(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (x

x
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where l

i

are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter l

i

controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: ⇡(x

x

x) , P(y = 1|xxx) = �(f(x

x

x))

in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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+ Squared-exponential ARD covariance function: 
determines (quantify) the relevancy of each user 
feature, i.e. the relevance of feature i is 
inversely proportional to the length-scale 
hyper-parameter li 

+ 9-class classification using one vs. all 
+ GP hyper-parameter learning with Expectation  

Propagation 
+ Inference using FITC (500 inducing points)
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Occupation classification insights (I)

Feature Analysis - Cumulative Density Functions
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Occupation classification insights (II)

CDF of the topic “Arts”: Topic more prevalent in C5 (which 
includes artists) and the upper classes
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Occupation classification insights (II)

CDF of the topic “Arts”: Topic more prevalent in C5 (which 
includes artists) and the upper classes
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Occupation classification insights (III)

CDF of the topic “Elongated Words”: Topic more prevalent 
in the lower classes, and less so in the upper classes
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Occupation classification insights (III)

CDF of the topic “Elongated Words”: Topic more prevalent 
in the lower classes, and less so in the upper classes
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Occupation classification insights (IV)

Topic distribution distance (Jensen-Shannon divergence) 
for the different occupational classes (1-9)

that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Occupation classification insights (IV)

Topic distribution distance (Jensen-Shannon divergence) 
for the different occupational classes (1-9)
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studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.
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cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.
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Occupation classification insights (IV)

Topic distribution distance (Jensen-Shannon divergence) 
for the different occupational classes (1-9)
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that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
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post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.
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Additional ‘perceived’ user features

+ Previously used features: Profile features, Shallow 
profile features, and Topics  

+ Based on the work of Volkova et al. (2015), we also 
incorporated: 
> Inferred Psycho-Demographic features (15) 

e.g. gender, age, education level, religion, life 
satisfaction, excitement, anxiety etc. 

> Emotions (9) 
e.g. positive / negative sentiment, joy, anger, fear, 
disgust, sadness, surprise etc.



Defining the user income regression task

of National Statistics (ONS) for listing and grouping occupations. Jobs are organised hierar-
chically based on skill requirements and content.

The SOC taxonomy includes nine 1-digit groups coded with a digit from 1 to 9. Each 1-digit
group is divided into 2-digit groups, where the first digit indicates its 1-digit group. Each
2-digit group is further divided into 3-digit groups and finally, 3-digit groups are divided into
4-digit groups. The 4-digit groups contain specific jobs together with their respective titles.
Table 1 shows a part of the SOC taxonomy. In total, there are 9 1-digit groups, 25 2-digit
groups, 90 3-digit groups and 369 4-digit groups. Although other occupational taxonomies
exist, we use SOC because it has been updated recently (2010), is the outcome of years of
research [22], contains newly introduced jobs, has a balanced hierarchy and offers a wide vari-
ety of job titles that were crucial in our dataset creation. A recent study has proven the effective-
ness of building large corpora of users and their SOC occupation from social media finding
many similarities to real world population distribution across jobs [23].

We use the job titles provided by the extended description of each 4-digit SOC groups to
query the Twitter Search API and retrieve a maximum of 200 accounts which best matched
each job title. In order to clean our dataset of inevitable errors caused by keyword matching
(e.g. ‘coal miner’s daughter’ is retrieved using the ‘coal miner’ keywords) two of the authors
performed a manual filtering of all retrieved profile descriptions. We removed all profiles
where either of the annotators considered that the profiles were not indicative of the job title
(e.g. ‘spare time guitarist’), contained multiple possible jobs (e.g. ‘marketer, social media ana-
lyst’) or represented an institutional account (e.g. ‘limo driver company’). In total, around 50%

Table 1. Subset of the SOC classification hierarchy.

Group 112: Production Managers and Directors (50,952 GBP/year)

•Job titles: engineering manager, managing director, production manager, construction manager, quarry
manager, operations manager

Group 241: Conservation and Environment Professionals (53,679 GBP/year)

•Job titles: conservation officer, ecologist, energy conservation officer, heritage manager, marine
conservationist, energy manager, environmental consultant, environmental engineer, environmental
protection officer, environmental scientist, landfill engineer

Group 312: Draughtspersons and Related Architectural Technicians (29,167 GBP/year)

•Job titles: architectural assistant, architectural, technician, construction planner, planning enforcement
officer, cartographer, draughtsman, CAD operator

Group 411: Administrative Occupations: Government and Related Organisations (20,373 GBP/year)

•Job titles: administrative assistant, civil servant, government clerk, revenue officer, benefits assistant,
trade union official, research association secretary

Group 541: Textiles and Garments Trades (18,986 GBP/year)

•Job titles: knitter, weaver, carpet weaver, curtain maker, upholsterer, curtain fitter, cobbler, leather
worker, shoe machinist, shoe repairer, hosiery cutter, dressmaker, fabric cutter, tailor, tailoress, clothing
manufacturer, embroiderer, hand sewer, sail maker, upholstery cutter

Group 622: Hairdressers and Related Services (10,793 GBP/year)

•Job titles: barber, colourist, hair stylist, hairdresser, beautician, beauty therapist, nail technician, tattooist

Group 713: Sales Supervisors (18,383 GBP/year)

•Job titles: sales supervisor, section manager, shop supervisor, retail supervisor, retail team leader

Group 813: Assemblers and Routine Operatives (22,491 GBP/year)

•Job titles: assembler, line operator, solderer, quality assurance inspector, quality auditor, quality
controller, quality inspector, test engineer, weightbridge operator, type technician

Group 913: Elementary Process Plant Occupations (17,902 GBP/year)

•Job titles: factory cleaner, hygene operator, industrial cleaner, paint filler, packaging operator, material
handler, packer

doi:10.1371/journal.pone.0138717.t001

Studying User Income in Social Media

PLOS ONE | DOI:10.1371/journal.pone.0138717 September 22, 2015 3 / 17

Same Twitter data 
set as in the job 

classification task 

Use an income 
mapping from  
SOC to create 

real-valued target 
data for the  

regression task



User income regression: data
Income prediction
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We approach the task as regression.

+ 5,191 Twitter users 
mapped to their 
occupations, then 
mapped to an 
average income in 
GBP (£) using the 
SOC taxonomy 

+ ~11 million tweets 

+ Download the data

https://figshare.com/articles/Twitter_User_Income_Dataset/1515997


User income regression performance
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User income regression insights (I)

• Differences in real income between predicted perceived income groups are significant. We
highlight that other groups (e.g. high income or graduate studies) have few users assigned
and therefore it is hard to estimate a reliable group mean;

• Predicted perceived intelligence should be correlated with actual income. However, the vast
majority of people are predicted to be part of the average intelligence class. Annotating intel-
ligence from text is a hard task and our classifier was trained on labels which had a very low
Cohen’s κ = .07 [51]. However, predicting actual income using only perceived intelligence
probabilities still leads to correlations (.135).

In addition, we unveil the following relationships on Twitter:

• Users perceived as being Christian earn significantly less on average than people who chose
not to signal their religious belief. This is different to surveys in the US [52] which show that
income levels are very similar between Christians and non-affiliated. This finding is caused
by users who are perceived of being Christian from their posts earn significantly less than
users who do not disclose their religious beliefs;

Fig 2. Mean incomewith confidence intervals for psycho-demographic groups. All group mean differences are statistically significant (Mann-Whitney
test, p < .001).

doi:10.1371/journal.pone.0138717.g002

Studying User Income in Social Media

PLOS ONE | DOI:10.1371/journal.pone.0138717 September 22, 2015 9 / 17



User income regression insights (II)

• Neutral sentiment increases with income, while both positive and negative sentiment
decrease. This uncovers that lower income users express more subjectivity online;

• Anger and fear emotions are more present in users with higher income while sadness, sur-
prise and disgust emotions are more associated with lower income; the changes in joy are not
significant.

Similarly to our analysis between income and psycho-demographics, we test whether these
emotional changes are statistically significant using a Mann-Whitney test on the 1,000 user

Fig 3. Linear and non-linear (GP) fit for Profile features. Variation of income as a function of user profile features. Linear fit in red, non-linear Gaussian
Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g003

Fig 4. Linear and non-linear (GP) fit for emotions and sentiments. Variation of income as a function of user emotion and sentiment scores. Linear fit in
red, non-linear Gaussian Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g004

Studying User Income in Social Media

PLOS ONE | DOI:10.1371/journal.pone.0138717 September 22, 2015 11 / 17

Relating income and user attributes

Linear vs GP fit



User income regression insights (III)

e1: positive (l=46.27) e2: neutral (l=57.64) e3: negative(l=76.34)

e4: joy (l=36.37) e5: sadness (l=67.05) e6: disgust (l=116.66)

e7: anger (l=95.50) e8: surprise (l=83.61) e9: fear (l=31.74)
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User income regression insights (IV)
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Defining a user SES classification task

Profile description 
on Twitter Occupation SOC category1 NS-SEC2

1. Standard Occupational Classification job groups 
2. National Statistics Socio-Economic Classification: 

Map from the job groups in the SOC to a 
socioeconomic status (SES): upper, middle or lower



UK Twitter user data set for SES classification

+ 1,342 UK Twitter user profiles 
+ 2 million tweets 
+ Date interval: Feb. 1, 2014 to March 21, 2015 
+ Labelled with a socioeconomic status (SES), 

using the occupational class proxy from SOC and 
NS-SEC: upper, middle, or lower 

+ 1,291 user features following the previous 
paradigms, i.e. quantifying behaviour, impact, 
profile info, text in tweets and topics from tweets 

+ Download the data set

https://figshare.com/articles/Socioeconomic_status_classification_of_social_media_users/1619703


SES classification performance

Classification Accuracy (%) Precision (%) Recall (%) F1

2 classes 82.05 (2.4) 82.2 (2.4) 81.97 (2.6) .821 (.03)

3 classes 75.09 (3.3) 72.04 (4.4) 70.76 (5.7) .714 (.05)

… using a Gaussian Process classifier

T1 T2 T3 P

O1 606 84 53 81.6%

O2 49 186 45 66.4%

O3 55 48 216 67.7%

R 854% 58.5% 68.8% 75.1%

3-class classification

T1 T2 P

O1 584 115 83.5%

O2 126 517 80.4%

R 82.3% 81.8% 82.0%

middle & lower merged



Conclusions — UGC mining: From collective 
disease rates to individual demographics 

influenza-like illness rates

occupational class

income

socio-economic status



Further thoughts

+ User-generated content is a valuable asset 

+ Nonlinear models tend to perform better given 
the multimodality of the feature space 

+ Deeper representations of text tend to improve 
performance 

+ Qualitative analysis is important 
> Evaluation 
> Interesting insights



Some of the future research challenges

+ Work closer with domain experts 

+ Better understanding of online media biases, 
e.g. demographics, external influence etc. 

+ Generalisation, defining limitations, more 
rigorous evaluation frameworks 

+ Methodological improvements 

+ Ethical concerns

http://fludetector.cs.ucl.ac.uk

http://fludetector.cs.ucl.ac.uk/internal/?from=2015-10-26&to=2016-05-01&weekly=yes&smoothing=0&google=yes&smoothing_unsupervised=0&phe_e=yes&keywords=
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Thank you! 
Any questions?

Slides can be downloaded from 
lampos.net/talks

@lampos | lampos.net

http://www.lampos.net/talks
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— intermediate values are ‘squashed’ 
— border values are ‘emphasised’

z-scored

logit

logit(a) = log(a/(1−a))



More information about Gaussian Processes

+ Book: “Gaussian Processes for Machine Learning” 
http://www.gaussianprocess.org/gpml/	

+ Video-lecture: “Gaussian Process Basics” 
http://videolectures.net/gpip06_mackay_gpb/	

+ Tutorial tailored to statistical NLP tasks: “Gaussian 
Processes for Natural Language Processing” 
http://people.eng.unimelb.edu.au/tcohn/tutorial.html 

+ Software I — GPML for Octave or MATLAB  
http://www.gaussianprocess.org/gpml/code 

+ Software II — GPy for Python 
http://sheffieldml.github.io/GPy/

http://www.gaussianprocess.org/gpml/
http://videolectures.net/gpip06_mackay_gpb/
http://people.eng.unimelb.edu.au/tcohn/tutorial.html
http://www.gaussianprocess.org/gpml/code
http://sheffieldml.github.io/GPy/

