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Facts

We started to work on this idea in 2008, when...
e Web contained 1 trillion unique pages (Google)

e Social Networks were rising, e.g.

o Facebook: 100m users in 2008, 955m in 2012 (June)
o Twitter. 6m users in 2008, 500m active users in 2012 (April)

e User behaviour was changing
o Socialising via the Web
o Giving up privacy (Debatin et al., 2009)
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Questions

e Does user generated text posted on Social Web platforms include
useful information?

e How can we extract this useful information...

. automatically? Therefore, not we, but a machine.
e Practical / real-life applications?

e Can those large samples of human input assist studies in other
scientific fields?
Social Sciences, Psychiatry...
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One slide on @Twitter. What does a ‘tweet’ look like?

Figure 1: Some biased and anonymised examples of tweets (limit of 140

characters/tweet, # denotes a topic)

Why do I feel so happy today hihi.
Bedtimeeee, good night. Yey thank You Lord
for everything. Answered prayer ¥

4~ Reply t3 Retweet W Favorite

(a) (user will remain anonymous)

another demo covered by citizens today in
Thessaloniki int'l fair. Citizen journalism on
a speed rise in #Greece. check #deth and
rbnews
«Reply IR

W Favorite

(c) citizen journalism
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RT if you love Justin Bieber. Delete ur
account if you don't.
4~ Reply T3 Retweet W Favorite

50 1

RETWEETS FAVORITE

(b) they live around us

i think i have the flu but i still look fabulous

4~ Reply T3 Retweet W Favorite

(d) flu attitude
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Data Collection

e Considered to be the easiest part of the process...
. not true!
o Storage space
o Crawler implementation, parallel data processing
o Equipment, new technologies (e.g. Map-Reduce)

e Data collected and used in the following experiments

o tweets geo-located in 54 urban centres in the UK

o collected periodically (every 3 or 5 minutes per urban centre)

o approx. 0.5 billion tweets by 10 million users (06/2009 to 01/2012)
o ground truth (regional flu & local rainfall rates)
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Nowcasting Events from the
Social Web
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‘Nowcasting'?

We do not predict the future, but infer the present — §

i.e. the very recent past

Figure 2: Nowcasting the magnitude of an event (¢) emerging in the real world
from Web information

Our case studies: nowcasting (a) flu rates & (b) rainfall rates (?!)
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What do we get in the end?
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Figure 3: Inferred rainfall rates for Bristol, UK (October, 2009)
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Core Methodology (1/3) — Turning text into numbers
Candidate features (n-grams): C = {¢;}
Set of Twitter posts for a time interval u: P = {p;}

Frequency of ¢; in p;:

o %) if Cc; € D,
g(ci,pj) = { 0 otherwise.

— g Boolean, maximum value for ¢ is 1 —

Score of ¢; in P(W):

L
Z g(cia p])
Jj=1
slec; P(u)) LA . —
( v ||
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Core Methodology (2/3)

Set of time intervals: I/ = {ux} ~ 1 hour, 1 day, ...
Time series of candidate features scores:

) _ [xml) x(uwr

where

L) {s <Cl’7)(ui)> .. 8 (C‘C|,P(’U4i)):|T

Target variable (event):
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Core Methodology (3/3) — Feature selection

Solve the following optimisation problem:

: u Uu) |12
s.t. Hw”fl <t,

t=«o- Hw()Lngl, o€ (0, 1]

e Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996)

¢ Enforce sparsity on w (feature selection)

e Least Angle Regression (LARS) — computes entire regularisation
path (Efron et al., 2004)
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Flu rates — Example of selected features

‘”dd"'l ﬂu bad

pain nightwapido n
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== seizur suspect SWne o qh lung )4 punoib
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*“tnderli health

Figure 4: Font size is proportional to the weight of each feature; flipped n-grams
are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)
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Rainfall rates — Example of selected features

= Wind-rain
pour I'a'!:!dr:;ﬁn rainstop rain
Iight I'ail'l [onel} Je

horribl weather
sleet

ranpdi.ldd lgau;?ﬁonsoon

Figure 5: Font size is proportional to the weight of each feature; flipped n-grams
are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)
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Examples of inferences
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(c) Bristol (rain)

Figure 6: Examples of flu and rainfall rates inferences from Twitter content
(Lampos and Cristianini, 2012)
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Flu Detector

URL: http://geopatterns.enm.bris.ac.uk/epidemics

Figure 7: Flu Detector uses the content of Twitter to nowcast flu rates in several
UK regions

(Lampos, De Bie and Cristianini, 2010)
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Extracting Mood Patterns from
the Social Web
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Computing a mood score
Table 1: Mood terms from WordNet Affect

Fear | Sadness | Joy | Anger
afraid depressed admire angry
fearful discouraged cheerful despise

frighten disheartened enjoy enviously
horrible dysphoria enthousiastic harassed
panic gloomy exciting irritate
(92 terms) (115 terms) (224 terms) (146 terms)

Mood score computation for a time interval u using n mood
terms and a sample of D days:

|D|

L~ (t)
MS(U |D|Z ﬁiz::lei]

(tau) fi(td’u) — fi

sf; " ==2——,ie{l,..,n}.
9fi
fi( d’“): normalised frequency of a mood term ¢ during time interval w in day deD
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Circadian mood patterns (1/2)
Figure 8: Circadian (24-hour) mood patterns based on UK Twitter content
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Circadian mood patterns (2/2)

Figure 9: Autocorrelation of circadian mood patterns based on hourly lags
revealing periodicities
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The mood of the nation (1/4)

Figure 10: Daily time series for the mood of Joy based on Twitter content
geo-located in the UK
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The mood of the nation (2/4)

Figure 11: Daily time series for the mood of Anger based on Twitter content
geo-located in the UK
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(Lansdall, Lampos and Cristianini, 2012)
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The mood of the nation (3/4)

Figure 12: Projections of 4-dimensional mood
components (based on 2011 Twitter content)
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The mood of the nation (4/4)

URL: http://geopatterns.enm.bris.ac.uk/mood

E Mood of Nation eera) - e itter Mood per Region | Archive

Vertical axis

Horizontal axis

Figure 13: Mood of the Nation uses the content of Twitter to nowcast mood rates
in several UK regions

(Lampos, 2012a)
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More applications (snapshots)
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Figure 14: Further information extraction examples from Twitter content

(Lampos, 2012a & 2012b)
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Not covered

Amongst the things you didn’t see:
¢ how the model inconsistency problems of LASSO are resolved

e different schemes for combining 1-grams and 2-grams

e performance metrics and comparison with baseline techniques or
other nonlinear, nonparametric learners

e further statistical analysis and psychiatric viewpoint of
circadian mood patterns

e comparison of different scoring functions for mood signals
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Conclusions

e Social Web holds valuable information

e interesting inferences can be made by applying statistical
methods on Twitter (user-generated) content

e machines can extract portions of this information automatically

o nowcasting events (flu and rainfall case studies)
o extraction of collective mood patterns

Currently participating in the TrendMiner EU-FP7 project.
How user-generated web content can be used to...

—o model political opinion
—o infer voting intention polls, election/referendum outcome

—o nowcast/predict financial indicators
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Last Slide!

The end.
Any questions?

Download the slides from
http://goo.gl/KZRke
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