Detecting Events and Patterns in the Social Web with Statistical Learning

Vasileios Lampos

Computer Science Department University of Sheffield

Outline

- \perp Motivation, Aims
- \perp Data
- \dashv Nowcasting Events from the Social Web
- ⊢ Extracting Mood Patterns from the Social Web
- \models Conclusions

We started to work on this idea in 2008, when...

- Web contained 1 trillion unique pages (Google)
- Social Networks were rising, e.g.
 - Facebook: 100m users in 2008, 955m in 2012 (June)
 - Twitter: 6m users in 2008, 500m active users in 2012 (April)
- User behaviour was changing
 - $\circ~$ Socialising via the Web
 - Giving up privacy (Debatin et al., 2009)

Questions

- Does user generated text posted on Social Web platforms include **useful information**?
- How can we **extract** this useful information...

... automatically? Therefore, not we, but a machine.

- Practical / real-life applications?
- Can those large samples of human input assist studies in other scientific fields? Social Sciences, Psychiatry...

One slide on @Twitter. What does a 'tweet' look like?

Figure 1: Some biased and anonymised examples of tweets (limit of 140 characters/tweet, # denotes a topic)

Why do I feel so happy today hihi. Bedtimeeee, good night. Yey thank You Lord for everything. Answered prayer ♥

🛧 Reply 🛟 Retweet ★ Favorite

(a) (user will remain anonymous)

another demo covered by citizens today in Thessaloniki int'l fair. Citizen journalism on a speed rise in #Greece. check #deth and #rbnews

```
🛧 Reply 🔁 Retweet 🔺 Favorite
```

(c) citizen journalism

RT if you love Justin Bieber. Delete ur account if you don't.

 Reply
 Retweet
 Favorite

 50
 1

 FAVORITE

(b) they live around us

i think i have the flu but i still look fabulous

(d) flu attitude

Data Collection

- Considered to be the **easiest part** of the process... ... **not true**!
 - Storage space
 - $\circ~$ Crawler implementation, parallel data processing
 - Equipment, new technologies (*e.g.* Map-Reduce)
- Data collected and used in the following experiments
 - tweets geo-located in 54 urban centres in the UK
 - **collected periodically** (every 3 or 5 minutes per urban centre)
 - $\,\circ\,$ approx. 0.5 billion tweets by 10 million users (06/2009 to 01/2012)
 - ground truth (regional flu & local rainfall rates)

Nowcasting Events from the Social Web

Detecting Events and Patterns in the Social Web

'Nowcasting'?

We do not predict the future, but infer the present - δ

i.e. the very recent past

Figure 2: Nowcasting the magnitude of an event (ε) emerging in the real world from Web information

Our case studies: nowcasting (a) flu rates & (b) rainfall rates (?!)

What do we get in the end?

Figure 3: Inferred rainfall rates for Bristol, UK (October, 2009)

°/34

Core Methodology (1/3) – Turning text into numbers

Candidate features (*n*-grams): $C = \{c_i\}$

Set of **Twitter posts** for a time interval u: $\mathcal{P}^{(u)} = \{p_j\}$ **Frequency** of c_i in p_j :

$$g(c_i, p_j) = \begin{cases} \varphi & \text{if } c_i \in p_j, \\ 0 & \text{otherwise.} \end{cases}$$

– g Boolean, maximum value for φ is 1 –

Score of c_i in $\mathcal{P}^{(u)}$:

$$s\left(c_{i}, \mathcal{P}^{(u)}\right) = \frac{\sum_{j=1}^{|\mathcal{P}^{(u)}|} g(c_{i}, p_{j})}{|\mathcal{P}^{(u)}|}$$

Core Methodology (2/3)

Set of time intervals: $\mathcal{U} = \{u_k\} \sim 1$ hour, 1 day, ...

Time series of candidate features scores:

$$\mathcal{X}^{(\mathcal{U})} = \left[x^{(u_1)} \dots x^{(u_{|\mathcal{U}|})} \right]^T,$$

where

$$x^{(u_i)} = \left[s\left(c_1, \mathcal{P}^{(u_i)}\right) \dots s\left(c_{|\mathcal{C}|}, \mathcal{P}^{(u_i)}\right) \right]^T$$

Target variable (event):

$$y^{(\mathcal{U})} = \begin{bmatrix} y_1 \ \dots \ y_{|\mathcal{U}|} \end{bmatrix}^T$$

Core Methodology (3/3) – Feature selection

Solve the following **optimisation problem**:

$$\begin{split} \min_{w} & \|\mathcal{X}^{(\mathcal{U})}w - y^{(\mathcal{U})}\|_{\ell_{2}}^{2} \\ \text{s.t.} & \|w\|_{\ell_{1}} \leq t, \\ & t = \alpha \cdot \|w_{\mathsf{OLS}}\|_{\ell_{1}}, \; \alpha \in (0,1]. \end{split}$$

- Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)
- Enforce **sparsity** on *w* (feature selection)
- Least Angle Regression (LARS) computes entire regularisation path (Efron et al., 2004)

How do we form candidate features?

- Commonly formed by indexing the **entire corpus** (Manning, Raghavan and Schütze, 2008)
- We extract them from Wikipedia, Google Search results, Public Authority websites (*e.g.* NHS)

Why?

 $\circ~$ reduce dimensionality to bound the error of LASSO

$$\mathcal{L}(w) \leq \mathcal{L}(\hat{w}) + \mathcal{Q}$$
, with $\mathcal{Q} \sim \min\left\{\frac{W_1^2}{N} + \frac{p}{N}, \frac{W_1^2}{N} + \frac{W_1}{\sqrt{N}}
ight\}$

p candidate features, N samples, empirical loss $\mathcal{L}(\hat{w})$ and $\|\hat{w}\|_{\ell_1} \leq W_1 \quad \text{(Bartlett, Mendelson and Neeman, 2011)}$

• Harry Potter Effect!

The 'Harry Potter' effect (1/2)

Figure 4: Events co-occurring with the inference target may affect feature selection, especially when the sample size is small.

(Lampos, 2012a)

The 'Harry Potter' effect (2/2)

Table 1: Top-20 1-grams correlated with flu rates in England/Wales (06–12/2009)

1-gram	Event	Corr. Coef.
latitud	Latitude Festival	0.9367
flu	Flu epidemic	0.9344
swine		0.9212
harri	Harry Potter Movie	0.9112
slytherin	▲	0.9094
potter	A	0.8972
benicassim	Benicàssim Festival	0.8966
graduat	Graduation (?)	0.8965
dumbledor	Harry Potter Novie	0.8870
hogwart	▲	0.8852
quarantin	Flu epidemic	0.8822
gryffindor	Harry Potter Movie	0.8813
ravenclaw	▲	0.8738
princ	A	0.8635
swineflu	Flu epidemic	0.8633
ginni	Harry Potter Movie	0.8620
weaslei	▲	0.8581
hermion	A	0.8540
draco		0.8533
snape	A	0.8486

Solution: ground truth with as many peaks/troughs as possible

(Lampos, 2012a)

About **n**-grams

1-grams:

- decent (dense) representation in the Twitter corpus
- unclear semantic interpretation Example: "I am not sick. But I don't feel great either!"

2-grams:

- very sparse representation in tweets
- possibly clearer semantic interpretation

Based on our experimental process...

a hybrid combination of 1-grams and 2-grams improves inference performance

Flu rates - Example of selected features

Figure 5: Font size is proportional to the weight of each feature; flipped n-grams are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)

Rainfall rates - Example of selected features

pour rain dai puddisuburb monsoon wind rain rain rainstop rain light rain horribl weather sleet

Figure 6: Font size is proportional to the weight of each feature; flipped n-grams are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)

Examples of inferences

Figure 7: Examples of flu and rainfall rates **inferences** from Twitter content (Lampos and Cristianini, 2012)

Detecting Events and Patterns in the Social Web

¹⁹/₃₄

Flu Detector

URL: http://geopatterns.enm.bris.ac.uk/epidemics

Figure 8: Flu Detector uses the content of Twitter to nowcast flu rates in several UK regions

(Lampos, De Bie and Cristianini, 2010)

Extracting Mood Patterns from the Social Web

Detecting Events and Patterns in the Social Web

Computing a mood score

Table 2:	Mood	terms	from	WordNet	Affect
----------	------	-------	------	---------	--------

Fear	Sadness	Joy	Anger
afraid	depressed	admire	angry
fearful	discouraged	cheerful	despise
frighten	disheartened	enjoy	enviously
horrible	dysphoria	enthousiastic	harassed
panic	gloomy	exciting	irritate
 (92 terms)	 (115 terms)	 (224 terms)	 (146 terms)

Mood score computation for a time interval u using n mood terms and a sample of D days:

$$\mathcal{M}_{s}(u) = \frac{1}{|D|} \sum_{j=1}^{|D|} \left(\frac{1}{n} \sum_{i=1}^{n} sf_{i}^{(t_{j,u})} \right)$$
$$sf_{i}^{(t_{d,u})} = \frac{f_{i}^{(t_{d,u})} - \bar{f}_{i}}{\sigma_{f_{i}}}, \ i \in \{1, ..., n\}$$

 $f_i^{(t_{d,u})}$: normalised frequency of a mood term i during time interval u in day $d{\in}D$

Circadian mood patterns (1/2)

Figure 9: Circadian (24-hour) mood patterns based on UK Twitter content

Detecting Events and Patterns in the Social Web

'/34

Circadian mood patterns (2/2)

Figure 10: Autocorrelation of circadian mood patterns based on hourly lags revealing periodicities

/34

The mood of the nation (1/5)

Figure 11: Daily time series for the mood of ${\bf Joy}$ based on Twitter content geo-located in the ${\bf UK}$

933 Day Time Series for Joy in Twitter Content

(Lansdall, Lampos and Cristianini, 2012a&b)

The mood of the nation (2/5)

Figure 12: Daily time series for the mood of ${\bf Anger}$ based on Twitter content geo-located in the ${\bf UK}$

(Lansdall, Lampos and Cristianini, 2012a&b)

The mood of the nation (3/5)

Figure 13: Change point detection using a 100-day moving window

(Lansdall, Lampos and Cristianini, 2012a)

²⁷/₃₄

The mood of the nation (4/5)

Figure 14: Projections of 4-dimensional mood signals on their top-2 principal components (based on 2011 Twitter content)

Days 1/45/358/365: New Year's / Valentine's / Christmas Eve / New Year's Eve Days 122/204/221: O.B. Laden's death / Winehouse's death, Breivik / UK riots

(Lampos, 2012a)

The mood of the nation (5/5)

URL: http://geopatterns.enm.bris.ac.uk/mood

Figure 15: Mood of the Nation uses the content of Twitter to nowcast mood rates in several UK regions

(Lampos, 2012a)

More applications (snapshots)

(a) Inferences of voting intention polls prior to the UK 2010 General Election

(b) Content similarity network

Figure 16: Further information extraction examples from Twitter content

(Lampos, 2012a & 2012b)

34

Not covered

Amongst the things you **didn't see**:

- how the model inconsistency problems of LASSO are resolved
- different schemes for **combining 1**-grams and **2**-grams
- performance metrics and comparison with baseline techniques or other nonlinear, nonparametric learners
- further statistical analysis and psychiatric viewpoint of circadian mood patterns
- comparison of different scoring functions for mood signals

Conclusions

- Social Web holds valuable information
- interesting inferences can be made by applying statistical methods on Twitter (user-generated) content
- machines can extract portions of this information automatically
 - nowcasting events (flu and rainfall case studies)
 - extraction of collective mood patterns

Currently participating in the **TrendMiner** EU-FP7 project. How **user-generated web content** can be used to...

- ---- model political opinion
- \multimap infer voting intention polls, election/referendum outcome
- \multimap nowcast/predict financial indicators

The end. Any questions?

Download the slides from http://goo.gl/F1G7a

33/34

Detecting Events and Patterns in the Social Web

References

- B. Debatin, J.P. Lovejoy, A.M.A. Horn, B.N. Hughes. Facebook and Online Privacy: Attitudes, Behaviors, and Unintended Consequences. Journal of Computer-Mediated Communication 15, pp. 83–108, 2009.
- V. Lampos and N. Cristianini. Nowcasting Events from the Social Web with Statistical Learning. ACM TIST 3(4), n. 72, 2012.
- R. Tibshirani. Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical Society, series B, 58(1), pp. 267–288, 1996.
- B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Least Angle Regression. The Annals of Statistics 32(2), pp. 407–499, 2004.
- C.D. Manning, P. Raghavan and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, p. 544, 2008.
- P.L. Bartlett, S. Mendelson and J. Neeman. L1-regularized linear regression: persistence and oracle inequalities. Probability Theory and Related Fields, pp. 1–32, 2011.
- 7. M.F. Porter. An algorithm for suffix stripping. Program 14(3), pp. 130-137, 1980.
- V. Lampos and N. Cristianini. Tracking the flu pandemic by monitoring the Social Web. Proceedings of CIP '10, pp. 411–416, 2010.
- V. Lampos, T. De Bie and N. Cristianini. Flu Detector Tracking Epidemics on Twitter. Proceedings of ECML PKDD '10, pp. 599–602, 2010.
- T. Lansdall-Welfare, V. Lampos and N. Cristianini. Effects of the Recession on Public Mood in the UK. Proceedings of WWW '12, pp. 1221–1226, 2012.(a)
- T. Lansdall-Welfare, V. Lampos and N. Cristianini. Nowcasting the mood of the nation. Significance 9(4), pp. 26–28, 2012.(b)
- V. Lampos. Detecting Events and Patterns in Large-Scale User Generated Textual Streams with Statistical Learning Methods. PhD Thesis, University of Bristol, p. 243, 2012.(a)
- V. Lampos. On voting intentions inference from Twitter content: a case study on UK 2010 General Election. CoRR, 2012.(b)