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Summary.	 We	 present	 a	 method	 for	 determining	 the	
socioeconomic	 status	 of	 a	 social	 media	 (Twitter)	 user.	
Initially,	 we	 formulate	 a	 3-way	 classification	 task,	 where	
users	 are	 classified	 as	 having	 an	 upper,	middle	 or	 lower	
socioeconomic	status.	A	nonlinear	 learning	approach	using	
a	 composite	 Gaussian	 Process	 kernel	 provides	 a	
classification	 accuracy	 of	 75%.	 By	 turning	 this	 task	 into	 a	
binary	 classification	–	upper	vs.	medium	and	 lower	 class	–	
the	proposed	classifier	reaches	an	accuracy	of	82%.
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Table 1. 1-gram samples from a subset of the 200 latent topics (word clusters) ex-
tracted automatically from Twitter data (D2).

Topic Sample of 1-grams

Corporate #business, clients, development, marketing, o�ces, product

Education assignments, coursework, dissertation, essay, library, notes, studies

Family #family, auntie, dad, family, mother, nephew, sister, uncle

Internet Slang ahahaha, awwww, hahaa, hahahaha, hmmmm, loooool, oooo, yay

Politics #labour, #politics, #tories, conservatives, democracy, voters

Shopping #shopping, asda, bargain, customers, market, retail, shops, toys

Sports #football, #winner, ball, bench, defending, footballer, goal, won

Summertime #beach, #sea, #summer, #sunshine, bbq, hot, seaside, swimming

Terrorism #jesuischarlie, cartoon, freedom, religion, shootings, terrorism

plus 2-grams) and 560 (1-grams) respectively. Thus, a Twitter user in our data
set is represented by a 1, 291-dimensional feature vector.

We applied spectral clustering [12] on D2 to derive 200 (hard) clusters of
1-grams that capture a number of latent topics and linguistic expressions (e.g.
‘Politics’, ‘Sports’, ‘Internet Slang’), a snapshot of which is presented in Ta-
ble 1. Previous research has shown that this amount of clusters is adequate for
achieving a strong performance in similar tasks [7,13,14]. We then computed the
frequency of each topic in the tweets of D1 as described in feature category c5.

To obtain a SES label for each user account, we took advantage of the SOC
hierarchy’s characteristics [5]. In SOC, jobs are categorised based on the required
skill level and specialisation. At the top level, there exist 9 general occupation
groups, and the scheme breaks down to sub-categories forming a 4-level struc-
ture. The bottom of this hierarchy contains more specific job groupings (369 in
total). SOC also provides a simplified mapping from these job groupings to a
SES as defined by NS-SEC [17]. We used this mapping to assign an upper, mid-
dle or lower SES to each user account in our data set. This process resulted in
710, 318 and 314 users in the upper, middle and lower SES classes, respectively.2

3 Classification Methods

We use a composite Gaussian Process (GP), described below, as our main
method for performing classification. GPs can be defined as sets of random
variables, any finite number of which have a multivariate Gaussian distribution
[16]. Formally, GP methods aim to learn a function f : Rd ! R drawn from a
GP prior given the inputs x 2 Rd:

f(x) ⇠ GP(m(x), k(x,x0)) , (1)

where m(·) is the mean function (here set equal to 0) and k(·, ·) is the covari-
ance kernel. We apply the squared exponential (SE) kernel, also known as the

2 The data set is available at http://dx.doi.org/10.6084/m9.figshare.1619703.
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Table 2. SES classification mean performance as estimated via a 10-fold cross valida-
tion of the composite GP classifier for both problem specifications. Parentheses hold
the SD of the mean estimate.

Num. of classes Accuracy Precision Recall F-score

3 75.09% (3.28%) 72.04% (4.40%) 70.76% (5.65%) .714 (.049)

2 82.05% (2.41%) 82.20% (2.39%) 81.97% (2.55%) .821 (.025)
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ferred to as the characteristic length-scale parameter. Note that ` is inversely
proportional to the predictive relevancy of x (high values indicate a low degree
of relevance). Binary classification using GPs ‘squashes’ the real valued latent
function f(x) output through a logistic function: ⇡(x) , P(y = 1|x) = �(f(x))
in a similar way to logistic regression classification. In binary classification, the
distribution over the latent f⇤ is combined with the logistic function to produce
the prediction ⇡̄⇤ =
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�(f⇤)P(f⇤|x,y, x⇤)df⇤. The posterior formulation has a

non-Gaussian likelihood and thus, the model parameters can only be estimated.
For this purpose we use the Laplace approximation [16,18].

Based on the property that the sum of covariance functions is also a valid
covariance function [16], we model the di↵erent user feature categories with a
di↵erent SE kernel. The final covariance function, therefore, becomes

k(x,x0) =

 
CX

n=1

kSE(cn, c
0
n)

!
+ kN(x,x

0) , (2)

where cn is used to express the features of each category, i.e., x = {c1, . . . , cC ,},
C is equal to the number of feature categories (in our experimental setup, C = 5)
and kN(x,x0) = ✓

2
N ⇥ �(x,x0) models noise (� being a Kronecker delta func-

tion). Similar GP kernel formulations have been applied for text regression tasks
[7,9,11] as a way of capturing groupings of the feature space more e↵ectively.

Although related work has indicated the superiority of nonlinear approaches
in similar multimodal tasks [7,14], we also estimate a performance baseline us-
ing a linear method. Given the high dimensionality of our task, we apply logistic
regression with elastic net regularisation [6] for this purpose. As both classifica-
tion techniques can address binary tasks, we adopt the one–vs.–all strategy for
conducting an inference.

4 Experimental Results

We assess the performance of the proposed classifiers via a stratified 10-fold cross
validation. Each fold contains a random 10% sample of the users from each of
the three socioeconomic statuses. To train the classifier on a balanced data set,
during training we over-sample the two less dominant classes (middle and lower),
so that they match the size of the one with the greatest representation (upper).
We have also tested the performance of a binary classifier, where the middle and
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Formulating	a	Gaussian	Process	classifier E

Topics	(word	clusters)	are	formed	by	applying	 
spectral	clustering	on	daily	word	frequencies	in	T2.	

Examples	of	topics	with	word	samples	

Corporate:	#business,	clients,	development,	marketing,	offices	

Education:	assignments,	coursework,	dissertation,	essay,	library	

Internet	Slang:	ahahaha,	awwww,	hahaa,	hahahaha,	hmmmm	

Politics:	#labour,	#politics,	#tories,	conservatives,	democracy	

Shopping:	#shopping,	asda,	bargain,	customers,	market,	retail	

Sports:	#football,	#winner,	ball,	bench,	defending,	footballer

D

Classification Accuracy	(%) Precision	(%) Recall	(%) F1

2-way 82.05	(2.4) 82.2	(2.4) 81.97	(2.6) .821	(.03)

3-way 75.09	(3.3) 72.04	(4.4) 70.76	(5.7) .714	(.05)

Classification	performance	(10-fold	CV)

T1 T2 P

O1 584 115 83.5%

O2 126 517 80.4%

R 82.3% 81.8% 82.0%

T1 T2 T3 P

O1 606 84 53 81.6%

O2 49 186 45 66.4%

O3 55 48 216 67.7%

R 854% 58.5% 68.8% 75.1%

Confusion	matrices	(aggregate)

O	=	output	(inferred),	T	=	target,	P	=	precision,	R	=	recall	
{1,	2,	3}	=	{upper,	middle,	lower}	socioeconomic	status

F

Conclusions.	(a)	First	approach	for	inferring	the	socioeconomic	
status	of	a	social	media	user,	(b)	75%	&	82%	accuracy	for	the	3-
way	and	binary	 classification	 tasks	 respectively,	 and	 (c)	 future	
work	 is	 required	 to	 evaluate	 this	 framework	 more	 rigorously	
and	to	analyse	underlying	qualitative	properties	in	detail.
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