
Inferring the Socioeconomic Status of Social Media Users based on Behaviour & Language

Vasileios Lampos, Nikolaos Aletras, Jens K. Geyti, Bin Zou & Ingemar J. Cox

Summary. We present a method for determining the socioeconomic status of a social media (Twitter) user. Initially, we formulate a 3-way classification task, where users are classified as having an **upper**, **middle** or **lower** socioeconomic status. A nonlinear learning approach using a composite Gaussian Process kernel provides a classification accuracy of 75%. By turning this task into a binary classification – upper vs. medium and lower class – the proposed classifier reaches an accuracy of **82**%.

1. Standard Occupational Classification: 369 job groupings

2. National Statistics Socio-Economic Classification: Map from the job groupings in SOC to a socioeconomic status, *i.e.* {upper, middle or lower}

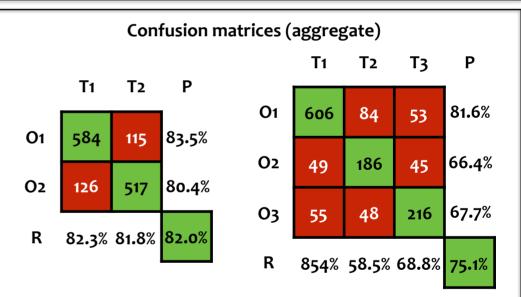
Topics (word clusters) are formed by applying **spectral clustering** on daily word frequencies in **T2**.


Examples of topics with word samples

Corporate: *#*business, clients, development, marketing, offices **Education:** assignments, coursework, dissertation, essay, library Internet Slang: ahahaha, awwww, hahaa, hahahaha, hmmmm **Politics**: *#labour, #politics, #tories, conservatives, democracy* **Shopping:** #shopping, asda, bargain, customers, market, retail **Sports:** #football, #winner, ball, bench, defending, footballer

Formulating a Gaussian Process classifier

Definition:


 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ $f \cdot \mathbb{R}^d \longrightarrow \mathbb{R} \quad \mathbf{v} \subset \mathbb{R}^d$

Data sets

T1: 1,342 Twitter user profiles, 2 million tweets, from February 1, 2014 to March 21, 2015; profiles are labelled with a socioeconomic status

T2: 160 million tweets, sample of UK Twitter, same date range with T1, used to learn a set of 200 latent topics

O = output (inferred), **T** = target, **P** = precision, **R** = recall $\{1, 2, 3\} = \{$ upper, middle, lower $\}$ socioeconomic status

Classification performance (10-fold CV)

Kernel
formulation:
where
$$k(\mathbf{x}, \mathbf{x}') = \left(\sum_{n=1}^{C} k_{SE}(\mathbf{c}_n, \mathbf{c}'_n)\right) + k_N(\mathbf{x}, \mathbf{x}')$$
$$\mathbf{x} = \{\mathbf{c}_1, \dots, \mathbf{c}_C\}, C = 5$$
$$k_{SE}(\mathbf{x}, \mathbf{x}') = \theta^2 \exp\left(-||\mathbf{x} - \mathbf{x}'||_2^2/(2\ell^2)\right)$$
$$k_N(\mathbf{x}, \mathbf{x}') = \theta_N^2 \times \delta(\mathbf{x}, \mathbf{x}')$$

Download the data set

Classification Accuracy (%) Precision (%) Recall (%) 82.05 (2.4) 81.97 (2.6) .821 (.03) 82.2 (2.4) 2-way 75.09 (3.3) 72.04 (4.4) 70.76 (5.7) .714 (.05) 3-way

Conclusions. (a) First approach for inferring the socioeconomic status of a social media user, (b) 75% & 82% accuracy for the 3way and binary classification tasks respectively, and (c) future work is required to evaluate this framework more rigorously and to analyse underlying qualitative properties in detail.

Selected References

D

Ξ

Lampos et al. Predicting and Characterising User Impact on Twitter. EACL, 2014.

Preotiuc-Pietro et al. An analysis of the user occupational class through Twitter content. ACL, 2015. Preotiuc-Pietro et al. Studying User Income through Language, Behaviour and Affect in Social Media. PLoS ONE, 2015. Rasmussen and Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.