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ABSTRACT

Public health interventions are a fundamental tool for mitigating

the spread of an infectious disease. However, it is not always pos-

sible to obtain a conclusive estimate for the impact of an inter-

vention, especially in situations where the effects are fragmented

in population parts that are under-represented within traditional

public health surveillance schemes. To this end, online user activ-

ity can be used as a complementary sensor to establish alternative

measures. Here, we provide a summary of our research on formu-

lating statistical frameworks for assessing public health interven-

tions based on data from social media and search engines (Lam-

pos et al., 2015 [20]; Wagner et al., 2017 [37]). Our methodology

has been applied in two real-world case studies: the 2013/14 and

2014/15 flu vaccination campaigns in England, where school-age

childrenwere vaccinated in a number of locations aiming to reduce

the overall transmission of the virus. Disease models from online

data combinedwith historical patterns of disease prevalence across

different areas allowed us to quantify the impact of the interven-

tion. In addition, a qualitative evaluation of our impact estimates

demonstrated that they were in line with independent assessments

from public health authorities.

1 INTRODUCTION

Data generated directly or indirectly by online users —also simply

referred to as user-generated data (UGC)— can reveal a significant

amount of information about their offline behaviour and status. In

fact, many recent research efforts have leveraged social media con-

tent or search engine usage to address interesting questions in a

number of domains, ranging from the Social Sciences [1, 8, 12] to

Psychology [13, 23, 35] and Health [4, 9, 18].

Drawing our focus on health-oriented applications, one of the

most prominent research tasks has been the derivation of Web-

based syndromic surveillance models for infectious diseases. Mod-

elling influenza-like illness (ILI) rates was the first successful exam-

ple [6, 9, 17, 31], followed by other conditions [3, 10, 34], including

mental health disorders [2, 4]. Criticisms regarding the accuracy of

the original disease models [22, 27] have been resolved in follow-

up studies by deploying more elaborate approaches [14, 19, 21].

One of the key motivations behind all the aforementioned works

has been the potential of adopting UGC as a complementary sen-

sor to doctor visits or hospitalisations, which are the main sources

of information in traditional public health surveillance networks.

An other important factor is that online data could provide access

to the bottom of a disease pyramid, i.e. cases of infection present

within specific demographies that are not well represented other-

wise.

In this work, we go beyond disease modelling by proposing a

statistical framework for assessing the impact of a health interven-

tion (against an infectious disease) based on online information.

Public health interventions, such as improved sanitation, immuni-

sation programmes or, simply, the promotion of health literacy, as-

sist in reducing the risk of various infections [5, 26]. However, the

absence of routine evaluation systems for such interventions to-

gether with the general deficiencies of the existing disease surveil-

lance schemes (e.g. under-represented parts of the populations), en-

ables only partial assessments, especially in situations where inter-

ventions are targeting a seasonal disease that is not characterised

by the magnitude of a pandemic.

We evaluate our algorithm against two real-world public health

interventions. These are two vaccination campaigns against flu

launched in England during 2013/14 (Phase A) and 2014/15 (Phase

B). Live attenuated influenza vaccines (LAIV) were administered to

school age children in various pilot locations, recognising that chil-

dren are key factors in the transmission of the influenza virus in

the general population [30]. In Phase A, the vaccine was offered to

primary school children (4-11 years) only [28], whereas in Phase B

it was also offered to children from secondary schools (11-13 years)

as well as in an expanded set of locations [29].

Data from Microsoft’s search engine, Bing, and the microblog-

ging service of Twitter are used as the main observations for the

proposed impact assessment framework. We deploy nonlinear su-

pervised learning techniques using composite Gaussian Process

kernels to model the time series of text frequencies in relation to

disease rates in the population. We then utilise this disease model

to uncover linear relationships between the disease rates in areas

of interest during a time period prior to the intervention. Finally,

we exploit this relationship to estimate a projection of disease rates

to affected areas had the intervention not taken place. Our analysis

yields interesting results, indicating that the intervention reduced

ILI rates by more than 20% in Phase A locations and by approxi-

mately 17% in primary school areas in Phase B. Both estimates that

are in agreement with independent assessments by Public Health

England (PHE) [28, 29].1

2 METHODS

We briefly describe our approach for modelling disease rates from

user-generated text and provide an overview of our statistical frame-

work for assessing the impact of a public health intervention.

The estimation of disease rates from online textual information

is formulated as a supervised learning task, f : X∈Rn×m → y∈Rn ,

where X represents the frequency ofm textual terms over n time

intervals, and y is the disease rate at the same time intervals (as

1They are in agreement in principle as direct comparisons are not valid.
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Algorithm 1 Assessing the impact of a health intervention using online user-generated data [20]

Input: X (user-generated data), y (disease rates), T (target locations where the intervention was applied), C (control locations; no inter-

vention), ∆tr (pre-intervention time period), ∆tα (intervention time period), ρmin (Pearson correlation threshold)

Output: θ (percentage of impact), ϵθ (confidence intervals), Sθ (statistical significance)

1: Train a model f that estimates disease rates from user-generated data during ∆tr , f : X → y

2: Derive all location subsets Ts , Cs of T , C respectively

3: Compute disease rates yTs , yCs during ∆tr using f

4: Compute all pairwise Pearson correlations, rTs ,Cs , between the time series of yTs and yCs
5: for all pairs between Ts and Cs do

6: if ri, j ≥ ρmin then ⊲ i , j refer to elements of Ts , Cs respectively

7: During ∆tr , train a model hi j that estimates the disease rates of a subset of target locations

from a subset of control locations, hi j : yCs j → yTsi
8: Use f to estimate disease rates in Cs j during ∆tα based on user-generated data, yc
9: Use hi j and yc to project disease rates in Tsi from the ones in Cs j during ∆tα , y

c
τ

10: Use f to estimate disease rates in Tsi during ∆tα based on user-generated data, yτ

11: Estimate the impact of the intervention at Tsi as θi =
µ (yτ )−µ (y

c
τ )

µ (ycτ )

12: Use bootstrapped impact estimates, θbi , to estimate confidence intervals for θi , ϵθi (.025 and .975 quantiles)

13: if |θi | > 2σ (θbi ) then

14: Consider the impact estimate θi as statistically significant, Sθi = 1

15: else

16: Sθi = 0

17: end if

18: end if

19: end for

obtained by a public health authority). Provided that nonlinear

models tend to outperform linear ones in text regression tasks [16,

19, 32], we composed and applied a Gaussian Process (GP) kernel

for capturing the structure of our observations. GPs are defined

as random variables any finite number of which have a multivari-

ate Gaussian distribution. GP methods aim to learn a function f :

R
m → R that is specified through a mean and a covariance (or ker-

nel) function, i.e. f (x) ∼ GP(µ(x),k(x, x′)), where x and x′ (both

∈ Rm ) denote rows of the input matrixX; for a detailed description

of GPs, we refer the reader to [33]. By setting µ(x) = 0, a common

practice in GP modelling, we just learn the hyper-parameters of

the kernel. We define the following abstract kernel formulation:

k(x, x′) =

(

Z
∑

z=1

kτ (gz , g
′
z )

)

+ kν (x, x
′) , (1)

where kτ can be any compatible GP kernel in the literature (we

use the Rational Quadratic and the Matérn covariance functions

in [20] and [37] respectively) that is applied on Z categories (or

clusters) of textual features,2 and kν captures noise.

Our methodology for assessing the intervention’s impact, influ-

enced by the work presented in [15], will utilise the above disease

rate model. It is presented in detail in Alg. 1. Assume that there

is a set of target areas T , where the intervention is applied, and

a set of control areas C, where the intervention has no effect. We

firstly compute disease rate estimates for all areas as well as all pos-

sible subsets of them (Ts , Cs ) from UGC. Ideally, for a target area

we wish to compare the disease rates during (and slightly after)

the intervention with disease rates that would have occurred, had

2We use Z = 4 categories of textual features based on the number of tokens (1 to 4).

the intervention not taken place. Of course, the latter information

can only be estimated. Focusing on target-control area pairs with

strong linear correlations (≥ ρmin = .6) in historical disease rates

prior to the intervention (∆tr ), we hypothesise that this relation-

ship would have been maintained in the absence of an interven-

tion. Therefore, we can learn a linear model (h) that estimates the

disease rates in a target area based on the disease rates of a con-

trol area with data prior to the intervention. Then, we can use this

model to project disease rates in a target area during the interven-

tion period (∆tα ), but had the intervention not taken place. Finally,

we can quantify the impact of the intervention by computing the

relative percentage of difference (θ) between the actual estimated

disease rates (from UGC) and the projected ones. Confidence in-

tervals for θ can be derived via bootstrap sampling [7], and in par-

ticular by both sampling (with replacement) the linear regression’s

residuals (from h) as well as the input data. Provided that the distri-

bution of the bootstrap estimates is unimodal and symmetric, we

assess an outcome as statistically significant, if its absolute value

is higher than two standard deviations of the bootstrap estimates.

3 RESULTS AND DISCUSSION

We first provide a brief overview of the data sets used in our analy-

sis. We then summarise the outcomes of the intervention’s impact

assessment in both vaccination campaigns (Phase A and B). Finally,

we propose potential directions for future research.

3.1 Data Sets

For the 2013/14 vaccination campaign (Phase A), we considered

7 target and 12 control areas (see Table 1 in [20]). We extracted
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Table 1: Impact estimates (disease reduction rates) for super-sets of locations in England participating in vaccination pro-

grammes as estimated by online user-generated data. Estimates in bold were assessed as statistically significant.

Phase Data Source Target Locations (T )
Num. of Control

Locations (C)
r (T ,C)

Disease Reduction

Rate % (θ)

A (2013/14)
Twitter All locations 8 .86 -32.72 (−47.43,−15.62)

Bing All locations 7 .87 -21.71 (−32.12,−9.12)

B (2014/15)

Twitter All locations 10 .89 −4.51 (−25.72, 22.61)

Twitter Primary school cohort 8 .71 -16.97 (−30.09,−2.42)

Twitter Secondary school cohort 7 .83 1.41 (−19.40, 28.40)

Twitter
Primary & secondary

school cohort
7 .84 −0.30 (−16.71, 19.36)

308 million tweets (May, 2011 to April, 2014), 2.2 million of which

contained flu-related n-grams.3 We additionally obtained search

query data (December, 2012 to April, 2014) for a smaller time pe-

riod due to user privacy regulations, which contained approx. 7.7

million flu-related queries. As the campaign expanded in 2014/15

to include more locations (Phase B) and different school-age chil-

dren groups, the number of target locations increased to 17 (6 pri-

mary, 7 secondary, and 4 primary and secondary school cohorts),

and 16 control areas were deployed (see Table 1 in [37]). For this

period, we extracted 520 million tweets geolocated in England (Au-

gust, 2011 to August, 2015). This analysis did not use any search en-

gine data. Historical ILI rates at a national level for England were

obtained from the Royal College of General Practitioners, repre-

senting the number of ILI cases per 100,000 people from 2011 to

2015.

3.2 Intervention Impact Assessment

A GP, as described in Section 2, was used for modelling ILI rates

from UGC since it outperformed linear alternatives, namely ridge

regression [11] and elastic net [39]. Using a 10-fold cross valida-

tion, the mean absolute error (MAE) for the Twitter-based model

during Phase A was equal to 2.2 (per 100,000 people) with an av-

erage Pearson correlation of r = .85, whereas the model used in

Phase B (trained and tested on more data) resulted to a MAE of

2.4 and r = .84. The model trained on Bing data (Phase A) outper-

formed other models on average (MAE = 1.6, r = .95), but at the

same time was tested on a significantly shorter time span.4

To assess the impact of the LAIV campaign, we first needed to

identify control areas with estimated ILI rates that were strongly

correlated to rates in the target vaccinated locations before the

start of the intervention. In doing so for Phase A (2013/14), we

looked for correlated areas in a pre-vaccination period that included

the previous flu season only (2012/13). The reason for this was that

the strains of influenza virus may vary between distant time pe-

riods [36] and thus, disease rates may be non homogeneous. For

Phase B (2014/15), however, we could not anymore use the previ-

ous flu season to establish relationships, given that the Phase A

3We used approximately 200 n-grams, listed in the supplementary material of [20].
4A more detailed performance evaluation is provided in Section 4.1 of [20].

campaign had already violated the assumed geographical homo-

geneity for 2013/14. Thus, we resided to using the period 2011/135

based on the fact that the circulated flu strains were not charac-

terised by any significant anomalies. Nevertheless, that resulted in

less robust estimates as indicated by our bootstrap sampling anal-

ysis (which yielded many of them as not statistically significant)

and, taking into account the one-year gap between training and

applying, perhaps less accurate projections as well.

A summary of the overall impact assessments is provided in

Table 1, where outcomes in bold are statistically significant. Dur-

ing Phase A, both data sets (Twitter and Bing) point to significant

reductions of disease rates, i.e. from −21.06% (Bing) to −32.77%

(Twitter) on average. A subsequent sensitivity analysis (see Table

4 in [20]), where more than one control areas were used to project

disease rates indicated that results from Twitter were generally

more robust, with the overall impact estimate (−32.77%) being the

most consistent one. PHE’s own impact estimates compared vacci-

nated to all non vaccinated areas, and ranged from −66% based on

sentinel surveillance ILI data to −24% using laboratory confirmed

influenza hospitalisations. Note though that these numbers repre-

sent different levels of severity or sensitivity, and notably none of

these computations was statistically significant [28]. As a further

evaluation point, we observed an analogy between the actual level

of vaccine uptake and the estimated impact from our end for a

number of areas.

In Phase B, our analysis indicated that areas where primary

school children were vaccinated benefited the most with an esti-

mated θ of −16.97%. However, for the current implementation of

the secondary school only vaccination programme, there was no

clear evidence of any population wide effect. Both these conclu-

sions are in line with findings of previous studies and complement

traditional surveillance sources in exhibiting community wide ef-

fects of the LAIV pilot campaign [28, 29].

3.3 Future Work

Our approach faces common limitations of research efforts based

onunstructureduser-generated text. Bettermethods that automate

the semantic interpretation of language can be deployed to derive

more accurate results. In fact, in follow-up works, we have pro-

posed techniques that are capable of combining the text statistics

5Includes two flu seasons from August, 2011 to August, 2013.
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(e.g. frequency time series) with a word embedding representation

[21, 24, 25, 38]. A further, perhaps more significant limitation, is

that the entirety of this work relies on the existence of ground

truth. Knowing historical disease rates is essential in order to train

a disease model from UGC. However, this may not be possible for

places with less established healthcare systems or for new infec-

tious diseases. In addition, even when syndromic surveillance can

provide estimates for the prevalence of a disease, it is very likely

that these will incorporate demographic biases, carrying them over

to any supervised model. Thus, there is a necessity to establish un-

supervised disease indicators from UGC. This is a harder problem

as it will be difficult to evaluate solutions and one will need to ac-

count for the specific demographic biases of the online users in or-

der to produce any viable conclusion. Nevertheless, ongoing work

will focus on resolving these issues as well as investigating the

framework’s applicability in assessing different types of a public

health intervention.
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